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Brain barrier structure of APPSWE Tg2576 mice

CUI Zhan—jun' LIU Fang® ZHAO Kai-bing’ LI Bing-mei* LIU Zhong-hua'*
(1. Institute of Nano Medicine; 2. Department of Pathology the First Affiliated Hospital of He’ nan University; 3. Department of Anatomy
Medical College of Kaifeng University; 4. Teaching Office He’ nan University Huaihe Hospital He’ nan Kaifeng 475001 China)
Abstract Objective  To investigate the basic structure of the blood brain barrier ( BBB) and blood
and ultrastructure during the

The APPSWE Tg2576 mice were used and divided into APPSWE

transgenic positive mice ( model group) and littermates wild type mice ( control group)

cerebrospinal fluid barrier ( BCSFB) in mice and their changes in structure function
development and progression of AD. Methods
twety mice in each group. After 16
months of feeding whole body perfusion was performed and the craniotomy was performed to obtain the lateral ventricle wall
and its choroid plexus. Immunofluorescence and transmission electron microscopy were used to observe the ultrastructure of
BBB and BCSFB so as to observe the changes of brain barrier of AD model. Results The vascular density was
significantly lower in the AD model group than in the control group; the normal structure of the brain barrier in AD mice
was impaired mainly due to the connection between the brain vascular endothelial cells ( or choroid plexus endothelial
cells) and their organelles being damaged. The ultrastructure of the choroid plexus also showed significant changes. The
main manifestations were the widening of the intercellular space and some of the connecting structures between the cells
such as adhesion and connection and some vesicle-like structures in the cytoplasm. Conclusion Compared with normal
mice the brain barrier of AD rats is damaged which may lead to corresponding changes in the brain barrier transport
mechanism and affect the clearance of AB in the brain and the steady-state mechanisms existing in the brain barrier such
as secretions and receptors thereof. Mediated signaling may also change and these factors may be involved in the formation
and progression of AD.
Key words Alzheimer” s disease; Blood brain barrier; Blood cerebrospinal fluid barrier; Choroid plexus;

Proliferation; Vascular nerve unit; Immunofluorescence; Mouse
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Fig. 1 The structure of BBB

A B Immunofluorescent staining and instillation of ink Nestin-marked glial cells have footplates that cling to the outside of the blood vessel wall ( red
1); C D Structured intact vascular endothelial cell nucleus ( A)  cytoplasmic mitochondria ( white 1)  vascular basement membrane ( Red 1) by
transmission electron microscope technology; A Bar =10 pm; B Bar =40 pm; C Bar=1 pm; D Bar =333 nm

Fig.2 The structure of BCSFB

A and B show the basic morphological structure of the choroid plexus of the embryonic day 14 ( E14) labeled by the Nestin and Fig. B shows the partial
magnified view of Fig. A; C—E show the basic morphological structure of the choroid plexus of the embryonic day 18 ( E18) marked by the collagen IV and
DAPI  and the collagen IV is the marker of capillary ( red) DAPI is the marker of the monolayer columnar choroid plexus epithelium ( blue) ; FH are
the basic morphological structure of choroid plexus labeled by collagen IV and DAPI at 7 days after birth ( P7) ; I K are 14 days after birth ( P14) and
the basic morphological structure of BrdU Nestintagged and HE-stained choroid plexus 30 days after birth ( P30) ; A~ Immunofluorescent staining; J
K HE staining; A Bar =20 pm; B Bar =80 pum; C-I K Bar=40 pm;J Bar=10 pm

3 AD 10 pm
A. ; B. AD (P<0.05)
Fig.3  Changes of cerebral vascular density in AD mice Instillation of ink Bar=10 pm
A Control group; B AD model group AD model group shows the distribution of blood vessels in cerebral cortex of AD model

rats; Compared with the wild type mice the vascular density is significantly reduced( P <0. 05)
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( A) | is. 1. s vh. s ve.
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Fig.4 Changes in the ultrastructure of BBB in AD mice Transmission electron microscope
A B The basic structure of the blood-brain barrier in wild mice B shows a partial enlargement of figure A; It clearly shows perivascular cells ( red A)
and the vascular basement membrane they form ( blue T); C¥ The basic structure of the blood-brain barrier in AD mice; D Partial enlargement of
figure C; F  Partial enlargement of figure E  showing perivascular cells ( red A) and endothelial cells ( white A) and their closeness connection ( blue
T) ; A Bar=1.3 pm; C Bar=1.0 pm; E Bar=2 pm; B D F Bar =500 nm
Fig.5 Ultrastructure of mouse BCSFB and its changes in AD mice
A-¥ Wild type mice; G-I  AD mice; A Immunofluorescent staining; B-] = Transmission electron microscope; cpe Choroid plexus endothelial cells; V1
Capillaries ventricular cavity; end Endothelium; bm Capillary basement membrane; mi Microvilli; nu Nuclei; m Mitochondria; i Basal fiber
crossover; bl Basal lamina; ct Connective tissue; oz Choriogonal cell apical obstruction zone; The macrophages from the outer and inner parts of the
choroid plexus are shown in Figures E and F ( red and blue A) respectively; is Structures such as expanded intercellular spaces; 1 Secondary
lysosomes; vh Vesicles of heterogeneous materials; ve Small vesicles of transparent materials; A large number of secretory vacuoles appear on the
microvilli surface ( T); A Bar =40 pm; B Bar=2.5 pm; C Bar=833 nm;D E Bar=1.7 pm; F Bar=2 pm; G Bar=2.9 pm; H Bar=2 pm;
I Bar=1.4 pm
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