Acta Anatomica Sinica ›› 2017, Vol. 48 ›› Issue (5): 622-627.doi: 10.16098/j.issn.0529-1356.2017.05.022
• Review • Previous Articles Next Articles
LIU Yi SUN Xue-jiao LI Cheng WANG Xi-ting LI Yu*
Received:
2016-11-15
Revised:
2016-12-11
Online:
2017-10-06
Published:
2017-10-06
Contact:
LI Yu
E-mail:liyubeijing1973@163.com
LIU Yi SUN Xue-jiao LI Cheng WANG Xi-ting LI Yu. Advances in the roles of microRNA-29 in renal fibrosis[J]. Acta Anatomica Sinica, 2017, 48(5): 622-627.
[1]Kriegel AJ, Liu Y, Fang Y, et al. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury[J]. Physiol Genomics, 2012,44(4):237-244.
[2]van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci U S A, 2008,105(35):13027-13032.
[3]Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29[J]. J Am Soc Nephrol, 2011,22(8):1462-1474.
[4]Xiao J, Meng XM, Huang XR, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice[J]. Mol Ther, 2012,20(6):1251-1260.
[5]Zhang Y, Huang XR, Wei LH, et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling[J]. Mol Ther, 2014,22(5):974-985.
[6]Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis[J]. J Am Soc Nephrol, 2012,23(2):252-265.
[7]Amiel J, de Pontual L, Henrion-Caude A. miRNA, development and disease[J]. Adv Genet, 2012,80:1-36.
[8]Bao X, Zhu X, Liao B, et al. MicroRNAs in somatic cell reprogramming[J]. Curr Opin Cell Biol, 2013,25(2):208-214.
[9]Goljanek-Whysall K, Sweetman D, Münsterberg AE. microRNAs in skeletal muscle differentiation and disease[J]. Clin Sci(Lond), 2012,123(11):611-625.
[10]Cullen BR. MicroRNAs as mediators of viral evasion of the immune system[J]. Nat Immunol, 2013,14(3):205-210.
[11]Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis[J]. Nat Genet, 2008,40(1):43-50.
[12]Mott JL, Kurita S, Cazanave SC, et al. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB[J]. J Cell Biochem, 2010,110(5):1155-1164.
[13]Wang H, Garzon R, Sun H, et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma[J]. Cancer Cell, 2008,14(5):369-381.
[14]Kapinas K, Kessler C, Ricks T, et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop[J]. J Biol Chem, 2010,285(33):25221-25231.
[15]Eyholzer M, Schmid S, Wilkens L, et al. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML[J]. Br J Cancer, 2010,103(2):275-284.
[16]Lan HY. Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation[J]. Int J Biol Sci, 2011,7(7):1056-1067.
[17]Zhou L, Wang L, Lu L, et al. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts[J]. PLoS One, 2012,7(3):e33766.
[18]Jiang L, Zhou Y, Xiong M, et al. Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells[J]. Exp Cell Res, 2013,319(14):2254-2265.
[19]Ramdas V, McBride M, Denby L, et al. Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29[J]. Am J Pathol, 2013,183(6):1885-1896.
[20]Zhang Y, Wang JH, Zhang YY, et al. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFbeta1 and miR-29 pathways[J]. Sci Rep, 2016,6:23010.
[21]Du B, Ma LM, Huang MB, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells[J]. FEBS Lett, 2010,584(4):811-816.
[22]Hsu Y, Chang P, Ho C, et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling[J]. Scientific Reports, 2016,6:30575.
[23]Cushing L, Kuang P, Lü J. The role of miR-29 in pulmonary fibrosis1[J]. Biochem Cell Biol, 2015,93(2):109-118.
[24]Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation[J]. J Biol Chem, 2009,284(23):15676-15684.
[25]Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins[J]. Proc Natl Acad Sci U S A, 2008,105(15):5874-5878.
[26]Liu Y, Taylor NE, Lu L, et al. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes[J]. Hypertension, 2010,55(4):974-982.
[27] Ogawa T, Iizuka M, Sekiya Y, et al. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells[J]. Biochem Biophys Res Commun, 2010,391(1):316-321.
[28]Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis[J]. Ame J Respir Cell Mol Biol, 2011,45(2):287-294.
[29]Fang Y, Yu X, Liu Y, et al. miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-alpha activation[J]. Am J Physiol Renal Physiol, 2013,304(10):F1274-F1282.
[30] Roderburg C, Urban G, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis [J]? Hepatology, 2011,53(1):209-218.
[31]Maurer B, Stanczyk J, Jüngel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis[J]. Arthritis Rheum, 2010,62(6):1733-1743.
[32]Cushing L, Kuang PP, Qian J, et al. miR-29 Is a major regulator of genes associated with pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2011,45(2):287-294.
[33] Kantharidis P, Wang B, Carew RM, et al. Diabetes complications: the microRNA perspective[J]. Diabetes, 2011,60(7):1832-1837.
[34]Zhou L, Xu DY, Sha WG, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway[J]. J Transl Med, 2015,13:352.
[35]Meng XM, Tang PM, Li J, et al. TGF-beta/Smad signaling in renal fibrosis[J]. Front Physiol, 2015,6:82.
[36]Chung A C, Dong Y, Yang W, et al. Smad7 suppresses renal fibrosis via altering expression of TGF-beta/Smad3-regulated microRNAs[J]. Mol Ther, 2013,21(2):388-398.
[37]Wang G, Kwan BC, Lai FM, et al. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis[J]. Am J Nephrol, 2012,36(5):412-418.
[38]de Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy[J]. Diabetes, 2011,60(11):2683-2684.
[39]Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver [J] ? Hepatology, 2009,50(6):2007-2013.
[40]Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition[J]. Hum Pathol, 2009,40(40):1365-1376.
[41]Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions[J]. J Clin Invest, 2009,119(6):1429-1437.
[42]Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance[J]. J Clin Med, 2016,5(2). pii: E17.
[43]Cho MH. Renal fibrosis[J]. Korean J Pediatri, 2010,53(7):735-740.
[44]Guo HL, Liao XH, Liu Q, et al. Angiotensin II type 2 receptor decreases transforming growth factor-beta type II receptor expression and function in human renal proximal tubule cells[J]. PLoS One, 2016,11(2):e148696.
[45]Yang DY, Huang XY, Shao JY,et al. The role of microRNA-29b in epithelial-mesenchymal transition of renal tubular epithelial cells induced by angiotensin II[J]. Journal of Wenzhou Medical College, 2013(02):71-77.(in Chinese)
杨德业, 黄晓燕, 邵驾宇, 等. microRNA-29b在血管紧张素Ⅱ诱导肾小管上皮细胞转分化中的作用[J]. 温州医学院学报, 2013(02):71-77.
[46]Xiong YJ, Hu ZhH, Qiu F, et al. MiR-29 down-regulates the expression of several genes involved in the AKT signal pathway[J]. Chinese Journal of Clinicians(Electronic Edition), 2012(14):3871-3874.(in Chinese)
熊玉娟,胡朝晖,邱峰,等. miR-29下调AKT信号通路中多个基因的表达[J]. 中华临床医师杂志(电子版), 2012(14):3871-3874.
[47]Yu H, Shi MJ, Xiao Y, et al. Up- regulation of Snail1 expression in renal tubular epithelial cells through Akt /GSK-3β pathway under high-glucose condition[J]. Chinese Journal of Pathophysiology, 2012(12):2222-2226.(in Chinese)
余红, 石明隽, 肖瑛, 等. Akt/GSK-3β介导高糖上调肾小管上皮细胞Snail1的表达[J]. 中国病理生理杂志, 2012(12):2222-2226.
[48] Pichaiwong W, Hudkins KL, Wietecha T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy[J]. J Am Soc Nephrol, 2013,24(7):1088-1102.
[49]Lin CL, Lee PH, Hsu YC, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction[J]. J Am Soc Nephrol, 2014,25(8):1698-1709.
[50]Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011,286(13):11837-11848.
[51]Yuen DA, Stead BE, Zhang Y, et al. eNOS deficiency predisposes podocytes to injury in diabetes[J]. J Am Soc Nephrol, 2012,23(11):1810-1823.
[52]Chen HY, Zhong X, Huang XR, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice[J]. Mol Ther, 2014,22(4):842-853.
[53]Lü LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis[J]. Am J Physiol Renal Physiol, 2013,305(8):F1220-F1227.
[54]Peng H, Zhong M, Zhao W, et al. Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients[J]. PLoS One, 2013,8(12):e82607.
[55]Mizuno H, Nakamura A, Aoki Y, et al. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy[J]. PLoS One, 2011,6(3):e18388.
[56]Chen X, Chen X, Han Sh, et al. Study on establishment of a real-time fluorescence quantitative PCR technique for detecting miR-29a in serum and its clinical primary application [J] .Journal of Clinical and Experimental Medicine, 2016(1):16-19.(in Chinese)
陈鑫, 陈曦, 韩霜, 等. 血清标本检测miR-29a实时荧光定量PCR方法的建立及临床初步应用[J]. 临床和实验医学杂志, 2016(1):16-19.
[57]Yang F, Li P, Li H, et al. microRNA-29b Mediates the Antifibrotic Effect of Tanshinone IIA in Postinfarct Cardiac Remodeling[J]. J Cardiovasc Pharmacol, 2015,65(5):456-464.
[58]Zheng J, Wu C, Lin Z, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation—a novel mechanism suppressing liver fibrosis[J]. FEBS J, 2014,281(1):88-103.
|
[1] | XU Yu-hong ZHANG Hui-ya WANG Yun-gen CHEN Jun-xia. MicroRNA-128-3p inhibiting epithelial-mesenchymal transition of ovarian cancer cells by regulating zince finger E-bonx binding homeobox 1 [J]. Acta Anatomica Sinica, 2022, 53(6): 762-768. |
[2] | LIU Min ZENG Yun ZHU Shan-shan WU Jia-cui GAO Hong-quan YI Xue. Protein kinase CβⅡ promoting the development of hepatocellular carcinoma via inducing epithelial-mesenchymal transition and angiogenesis [J]. Acta Anatomica Sinica, 2020, 51(6): 912-918. |
[3] | LIU Dan-hui LIU Yu-zhen CHEN Yan-min CHEN Zhi ZHAO Bao-sheng. Trichostatin A promotes the migration of esophageal squamous carcinoma cells by protein kinase C signaling pathway#br# [J]. Acta Anatomica Sinica, 2020, 51(2): 228-232. |
[4] | ZHAO Yu- FAN Jun BAI Shu-ling. Preparation and histological evaluation of human decellularized adipose tissue [J]. Acta Anatomica Sinica, 2020, 51(1): 128-131. |
[5] | WENG Jie HUANG Tao-tao WANG Zhi-yi CHEN Chan WAN Xin-long ZHOU Xiao-ming MEI Jin WANG Zhi-bin. Preparation and identification of thyroid gland decellularized biologic scaffold [J]. Acta Anatomica Sinica, 2019, 50(6): 827-830. |
[6] | ZHOU Ji-hang XU Li-yun LU Chang-chang HUANG Yan-yan WANG Xin-chen LE Han-bo. Features of CT reconstruction images and expressions of epithelia-mesenchymal transition related genes in lung adenocarcinoma with micropapillary pattern [J]. Acta Anatomica Sinica, 2019, 50(1): 63-71. |
[7] | SHI Liang LI Hui-chao JING Ya XIE Jian-shan CHEN Hao CAI Yu-jin YANG Yan-ping. Epithelial-mesenchymal transition during the development of pulmonary endoderm-associated second heart field in mouse embryos [J]. Acta Anatomica Sinica, 2018, 49(4): 480-485. |
[8] | LIN Xu WANG Zhi-yong WU Jing-fang ZHANG Wen-jing ZHANG Jing XUE Gang. Effect and mechanism of trefoil factor 3 on epithelial-mesenchymal transition of papillary thyroid carcinoma TPC-1 cells [J]. Acta Anatomica Sinica, 2018, 49(2): 204-211. |
[9] | XU Xin-wei YANG Yu-ling SUN Zhi-liang ZHANG Guo-xin ZENG Guo-dong LI Hong-li YIN Chong-gao*. Raptor promoting invasion and metastasis of breast cancer through the signaling pathway Wnt3a/β-catenin [J]. AAS, 2017, 48(6): 682-687. |
[10] | QIN Yu-meng ZHOU Tao ZHANG Lu LIU Yu WANG Xin-wang WANG Zhi-bin MEI Jin CHEN Sheng-hua. Preparation and identification of decellularized scaffold of a single lobe of liver in rat [J]. Acta Anatomica Sinica, 2017, 48(4): 477-481. |
[11] | WANG Xin GAO Jun-ling* ZHAO Man-man ZHU Hui-xing TIAN Yan-xia LI Ran JIANG Xiao-hua YU Lei TIAN Jing-rui CUI Jian-zhong. Inhibition of bone marrow mesenchymal stem cells on epithelial mesenchymal transformation induced by transforming growth factor-β1 [J]. AAS, 2016, 47(6): 756-762. |
[12] | ZHANG Li-mei ZHAN Jun ZHANG Hong-quan XUE Li-xiang*. Identification of the downstream signaling pathways of HOXA5 in breast cancer cells [J]. AAS, 2015, 46(5): 634-640. |
[13] | LI Wen-chun* LI Jing ZHANG Hong-mei WANG Han-qin. Preparation and histological evaluation of the decellularized scaffold for porcine common bile duct [J]. AAS, 2015, 46(5): 694-698. |
[14] | ZHUANG Hai-hui WANG Xue WANG Ping*. Transcription factor cAMP response element binding protein mediates tumor metastasis and the related molecular mechanism [J]. AAS, 2015, 46(1): 138-143. |
[15] | SHAO Ying-kuan YAN Xia-lin RAO Zhi-heng HUANG Gao-jian LI Jia-wei HUANG Jun-jie MEI Jin* LIN Ke-zhi*. Biocompatibility of rat’s nature decellularized pancreatic biological scaffolds [J]. AAS, 2014, 45(4): 561-568. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||