[1]Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease [J]. Lancet, 2006, 368(9533): 387-403.
[2]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study [J]. Neuroimage, 2007, 35(2): 488-500.
[3]Lees AJ. The relevance of the Lewy Body to the pathogenesis of idiopathic Parkinson’s disease: accuracy of clinical diagnosis of idiopathic Parkinson’s disease [J]. J Neurol Neurosurg Psychiatry, 2012, 83(10): 954-955.
[4]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [J].Magn Reson Med, 1995, 34(4):537-541.
[5]Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI [J]. Brain Dev, 2007, 29(2): 83-91.
[6]Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequencyfluctuation (ALFF) for resting-state fMRI: fractional ALFF [J]. J Neurosci Methods, 2008, 172(1): 137-141.
[7]Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: complex and reliable [J]. Neuroimage, 2010, 49(2): 1432-1445.
[8]Yan CG, Craddock RC, Zuo XN, et al. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes [J]. Neuroimage, 2013, 80: 246-262.
[9]Jia XZ, Sun JW, Ji GJ, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at single voxel level [J].PLoS One, 2020, 15(1): e0227021.
[10]Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brain function. [J]. Proc Natl Acad Sci USA, 2001, 98(2): 676-682.
[11]Zhang D, Raichle ME. Disease and the brain’s dark energy[J]. Nat Revs Neurol, 2010, 6(1):15-28.
[12]Cao JJ, Fan WJ, Shi ZhY, et al. Effect of amyloid beta-peptide25-35 neurotoxicity on cytoskeletons of PC12 cells[J]. Acta Anatomica Sinica, 2016, 47(4):469-475. (in Chinese)
曹静井,范文娟,石贞宇,等. β淀粉样蛋白25~35对 PC12 细胞骨架的毒性作用[J]. 解剖学报,2016,47(4):469-475.
[13]Greicius MD, Flores BH, Menon V, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus [J]. Biol Psychiatry, 2007, 62(5): 429-437.
[14]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis [J]. Hum Brain Mapp, 2005, 26(1): 15-29.
[15]Gould RL, Arroyo B, Brown RG, et al. Brain mechanisms of successful compensation during learning in Alzheimer disease[J]. Neurology, 2006, 67(6):1011-1017.
[16]Buckner RL. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate[J].Neuron, 2004, 44(1):195-208.
[17]Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: Patterns of functional MRI activation [J]. J Int Neuropsychol Soc, 1999, 5(5):377-392.
[18]Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease[J]. J Neurosci, 2003, 23(3):986-993.
[19]Rizzo M, Anderson SW, Dawson J, et al. Vision and cognition in Alzheimer’s disease[J]. Neuropsychologia, 2000, 38(8) :1157-1169.
[20]Holler DE, Behrmann M, Snow JC. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. [J]. Cortex, 2019,119: 555-568.
[21]Bokde ALW, Lopez-Bayo P, Born C, et al. Alzheimer disease: functional abnormalities in the dorsal visual pathway[J]. Radiology, 2010, 254(1):219-226.
[22]Fu CHY, Mourao-Miranda J, Costafrecla SG, et al. Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression[J]. Biol Psychiatry, 2008, 63(7): 656-662.
[23]Vannini P, Lehmann C, Dierks T, et al. Failure to modulate neural response to increased task demand in mild Alzheimer’s disease: fMRI study of visuospatial processing[J]. Neurobiol Dis, 2008, 31(3): 287-297.
[24]Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease[J]. NeuroImage, 2002, 17(3): 1403-1414.
[25]Graybiel A. The basal ganglia[J]. Curr Biol, 2000, 10(14): R509-R511.
[26]Gould RL, Brown RG, Owen AM, et al. Functional neuroanatomy of successful paired associate learning in Alzheimer’s disease[J]. Am J Psychiatry, 2005, 162(11): 2049-2060.
[27]Bas O, Acer N, Mas N, et al. Stereological evaluation of the volume and volumefraction of intracranial structures in magnetic resonance[J]. Ann Anat, 2009, 191(2): 186-195.
[28]Sjobeck M,Englund E. Alzheimer’s disease and the cerebellum:a morphologic study on neuronal and glial changes[J]. Dement Geriatr Cogn Disord, 2001, 12(3): 211-218.
[29]Turner BM, Paradiso S, Marvel CL, et al. The cerebellum and emotional experience[J]. Neuropsychologia, 2007, 45(6): 1331-1341.
|