[1]Zhan XW, Yang L, Zheng MR, et al. Bone marrow mesenchymal stem cells [J]. Acta Ananatomica Sinica, 2019, 50 (3): 400-404. (in Chinese)
占秀文, 杨磊, 郑美蓉, 等. 骨髓间充质干细胞成脂成骨平衡调控研究进展 [J]. 解剖学报, 2019, 50 (3): 400-404.
[2]Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue [J]. Int J Mol Sci, 2020, 21 (24): 9759.
[3]Cui J, Shu J. Circulating microRNA trafficking and regulation: computational principles and practice [J]. Brief Bioinform, 2020, 21 (4): 1313-1326.
[4]Kranjc T, Milojevic' M, Kocjan T, et al. Plasma levels of miR-30d-5p are decreased in regularly exercising postmenopausal women [J]. Menopause, 2020, 27(3):319-325.
[5]Li J, Yang S, Li X, et al. Role of endoplasmic reticulum stress in disuse osteoporosis [J]. Bone, 2017, 97: 2-14.
[6]Li J, Li X, Liu D, et al. eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice [J]. Cell Death Dis, 2019, 10 (12): 921.
[7]Riffo-Campos áL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: What to choose [J]. Int J Mol Sci, 2016, 17 (12): 1987.
[8]Li XQ, Bai ShL, Ao Q, et al. Effect of Klotho on proliferation and differentiation of rat bone marrow mesenchymal stem cells [J]. Acta Ananatomica Sinica, 2019, 50 (6): 729-734. (in Chinese)
李秀全, 柏树令, 敖强, 等. Klotho对大鼠骨髓间充质干细胞增殖和分化的影响 [J]. 解剖学报, 2019, 50 (6): 729-734.
[9]Lee KS, Lee J, Kim HK, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p [J]. Extracell Vesicles, 2021, 10 (12): e12152.
[10]Weivoda MM, Lee SK, Monroe DG. miRNAs in osteoclast biology [J]. Bone, 2021, 143: 115757.
[11]Grillari J, Mkitie RE, Kocijan R, et al. Circulating miRNAs in bone health and disease[J]. Bone, 2021, 145: 115787.
[12]Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury [J]. Crit Care, 2021, 25 (1): 356.
[13]Wu ZH, Huang KH, Liu K, et al. DGCR5 induces osteogenic differentiation by up-regulating RUNX2 through miR-30d-5p [J]. Biochem Biophys Res Commun, 2018, 505 (2): 426-431.
[14]Zhang ShJ. Effects of moderate intensity exercise on osteoporosis and bone morphogenetic protein-2 signaling pathway in ovariectomized rats [J]. Acta Ananatomica Sinica, 2020, 51 (6): 934-939. (in Chinese)
张帅军. 中等强度运动对去卵巢大鼠骨质疏松及骨形态发生蛋白2信号通路的影响 [J]. 解剖学报, 2020, 51 (6): 934-939.
[15]Komori T. Molecular mechanism of RUNX2-dependent bone development [J]. Mol Cells, 2020, 43 (2): 168-175.
[16]Elfiky AA, Baghdady AM, Ali SA, et al. GRP78 targeting: Hitting two birds with a stone [J]. Life Sci, 2020, 260: 118317.
[17]Martelli AM, Paganelli F, Chiarini F, et al. The unfolded protein response: A novel therapeutic target in acute leukemias [J]. Cancers (Basel), 2020, 12 (2): 333.
|