[1]Sun C, Ou X, Farley JM, et al. Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of triple transgenic mouse model of alzheimers disease [J]. Curr Alzheimer Res, 2012, 9 (4): 473-480.
[2]Horvath J, Burkhard PR, Herrmann FR, et al. Neuropathology of parkinsonism in patients with pure Alzheimer’s disease [J]. J Alzheimers Dis, 2014, 39 (1): 115-120.
[3]Wang QS, Qi ShSh, Zhou P, et al. Effects of allopregnanolone on the dopaminergic neurons in the substantia nigra of Alzheimer’s disease mice [J]. Acta Anatomica Sinica, 2013, 44 (2):175-180. (in Chinese)
王琼仨, 戚双双, 周鹏, 等. 别孕烯醇酮对AD小鼠黑质多巴胺神经元的影响 [J]. 解剖学报, 2013, 44(2): 175-180.
[4]Brar S, Henderson D, Schenck J, et al. Iron accumulation in the substantia nigra of patients with Alzheimer disease and parkinsonism [J]. Arch Neurol, 2009, 66 (3): 371-374.
[5]Lauritzen I, Pardossi-Piquard R, Bauer C, et al. The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus [J]. J Neurosci, 2012, 32 (46): 16243-16255.
[6]Perez SE, Berg BM, Moore KA, et al. DHA diet reduces AD pathology in young APPswe/PS1DeltaE9 transgenic mice: possible gender effects [J]. J Neurosci Res, 2010, 88 (5): 1026-1040.
[7]Demars M, Hu YS, Gadadhar A, et al. Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice [J]. J Neurosci Res, 2010, 88 (10): 2103-2117.
[8]Rodríguez JJ, Jones VC, Verkhratsky A. Impaired cell proliferation in the subventricular zone in an Alzheimer’s disease model [J]. Neuroreport, 2009, 20 (10): 907-912.
[9]Yang QQ, Zhang P, Dai KCh, et al. Actions of neurosteroids in neurons and the treatment of neurodegerative disease [J]. Acta Anatomica Sinica, 2014, 45 (3): 424-429. (in Chinese)
杨倩倩, 张鹏, 戴侃纯, 等. 神经甾体激素对神经元的影响及在神经退行性疾病治疗中的作用 [J]. 解剖学报, 2014, 45 (3): 424-429.
[10]Bengtsson SK, Johansson M, Backstrom T, et al. Brief but chronic increase in allopregnanolone cause accelerated AD pathology differently in two mouse models [J]. Curr Alzheimer Res, 2013, 10 (1): 38-47.
[11]Wang JM, Singh C, Liu L, et al. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease [J]. Proc Natl Acad Sci USA, 2010, 107 (14): 6498-6503.
[12]Chen S, Wang JM, Irwin RW, et al. Allopregnanolone promotes regeneration and reduces beta-amyloid burden in a preclinical model of Alzheimer’s disease [J]. PLoS One, 2011, 6 (8): e24293.
[13]Singh C, Liu L, Wang JM, et al. Allopregnanolone restores hippocampal-dependent learning and memory and neural progenitor survival in aging 3xTgAD and nonTg mice [J]. Neurobiol Aging, 2012, 33 (8):1493-1506.
[14]Klementieva O, Aso E, Filippini D, et al. Effect of poly (propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as model of brain amyloid deposition and Alzheimer’s disease [J]. Biomacromolecules, 2013, 14 (10): 3570-3580.
[15]Yu CJ, Liu W, Chen HY, et al. BACE1 RNA interference improves spatial memory and attenuates Aβ burden in a streptozotocin-induced tau hyperphosphorylated rat model [J]. Cell Biochem Funct, 2014, 32 (7): 590-596.
[16]Wang JM. Allopregnanolone and neurogenesis in the nigrostriatal tract [J]. Front Cell Neurosci, 2014, 8 (224): 1-8.
[17]Naylor JC, Kilts JD, Hulette CM, et al. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer’s disease compared to cognitively intact control subjects [J]. Biochim Biophys Acta, 2010, 1801 (8): 951-959.
[18]Wang JM, Sun C. Calcium and neurogenesis in Alzheimer’s disease [J]. Front Neurosci, 2010, 4 (194): 1-5.
[19]Zhao M, Janson Lang AM. Bromodeoxyuridine infused into the cerebral ventricle of adult mice labels nigral neurons under physiological conditions-a method to detect newborn nerve cells in regions with a low rate of neurogenesis [J]. J Neurosci Meth, 2009, 184 (2): 327-331.
[20]Peh GS, Lang RJ, Pera MF, et al. CD133 expression by neural progenitors derived from human embryonic stem cells and its use for their prospective isolation [J]. Stem Cells Dev, 2009, 18 (2): 269-282. |