[1] Zou ChG, Feng H, Chen B, et al. Dynamic changes of neurological dysfunction and cognitive impairment in traumatic brain injury [J]. Acta Anatomica Sinica, 2024, 55(1):43-48. (in Chinese)
邹成功,冯浩,陈兵,等.创伤性颅脑损伤中神经功能障碍与认知功能损伤的动态变化[J]. 解剖学报, 2024, 55(1):43-48.
[2] Meyfroidt G, Bouzat P, Casaer MP, et al. Management of moderate to severe traumatic brain injury: an update for the intensivist[J].Intensive Care Med, 2022, 48(6): 649-666.
[3] Yu F, Iacono D, Perl DP, et al. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice[J]. Acta Neuropathol, 2023, 146(4): 585-610.
[4] Tsitsopoulos PP, Abu hamdeh S, Marklund N, et al. Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury[J]. Front Neurol, 2017, 20(8): 599.
[5] Rkdahla BJ, Rnssone ESBJ, Ljungvist J, et al. Decline in cognitive function due to diffuse axonal injury does not necessarily imply a corresponding decline in ability to perform activities[J]. Disabil Rehabil, 2016, 38(10):1006-1015.
[6] Shi H, Hu X, Leak RK, et al. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury[J]. Exp Neurol, 2015, 272:17-25.
[7] Mu J, Li MY, Wang TT, et al. Myelin damage in diffuse axonal injury[J].Front Neurosci, 2019, 13:217.
[8] Liu B, Xin W, Tan JR, et al. Myelin sheath structure and regeneration in peripheral nerve injury repair[J]. Proc Natl Acad Sci USA, 2019, 116(44):22347-22352.
[9] Ekmark Lewn A, Flygt J, Kiwanuka O, et al. Traumatic axonal injury in the mouse is accompanied by a dynamic inflammol/Latory response, astroglial reactivity and complex behavioral changes[J]. J Neuroinflammation, 2013, 10(1):44-57.
[10] Mu J, Song Y, Zhang J, et al. Calcium signaling is implicated in the diffuse axonal injury of brain stem[J]. Int J Clin Exp Pathol, 2015, 8(5):4388-4397.
[11] Yin MY, Guo L, Zhao LJ, et al. Reduced Vrk2 expression is associated with higher risk of depression in humans and mediates depressive-like behaviors in mice[J].BMC Med, 2023, 21(1): 256.
[12] Zhang P, Zhu SS, Zhao MZ, et al. Integration of 1H NMR and UPLCQTOF/MSbased plasma metabonomics study to identify diffuse axonal injury biomarkers in rat[J]. Brain Res Bull, 2018, 140:19-27.
[13] Zhang P, Wang S, Liu MQ, et al. UPLC/QTOF MS based urine metabonomics study to identify diffuse axonal injury biomarkers in rat[J]. Dis Markers, 2022,2022: 2579489.
[14] Li MY, Mu J, Wang TT, et al. Glial response following diffuse axonal injury[J]. Acta Anatomica Sinica,2019,50(5):554560. (in Chinese)
李美玉,穆娇,王婷婷,等.弥漫性轴索损伤后胶质细胞的反应性变化[J].解剖学报,2019,50(5):554-560.
[15] Macruz FBC, Feltrin FS, Zaninotto A, et al. Longitudinal assessment of magnetization transfer ratio, brain volume, and cognitive functions in diffuse axonal injury[J]. Brain Behav, 2022, 12(3):2490.
[16] Nilsson J, Gobom J, Sjdin S, et al. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer’s disease[J]. Alzheimers Dement (Amst), 2021, 13(1):12179.
[17] Pavia-Collado R,Alarcn Arís D, Ruiz-Bronchal E, et al. Impairment of learning and memory in mice overexpressing α and γ synuclein in dopaminergic neurons implication in Parkinson’s disease[J]. Eur Neuropsychopharm, 2018, 28(Suppl 1):38-39.
[18] Pavia-Collado R, Rodríguez-Aller R, Alarcon-Arís D, et al. Up and down γ-synuclein transcription in dopamine neurons translates into changes in dopamine neurotransmission and behavioral performance in mice[J]. Int J Mol Sci, 2022, 23(3):1807.
[19] Zhang P, Zhu SS, Li YG, et al. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS[J]. J Proteomics, 2016, 133(5):93-99.
[20] Zheng XQ, Wei W, Li HH, et al. Effects of Zexia Decoction on cognitive function and neuroinflammol/Lation of brain tissue in mice model of cognitive function impairment induced by high calorie diet[J]. Journal of Traditional Chinese Medicine, 2024, 65 (4): 395-403. (in Chinese)
郑晓清,魏伟,李惠红,等. 泽泻汤对高热量饮食诱导认知功能损害模型小鼠的认知功能及脑组织神经炎症的影响[J]. 中医杂志,2024,65 (4): 395-403.
[21] Wang W, Gao W, Zhang L, et al. SNAP25 ameliorates postoperative cognitive dysfunction by facilitating PINK1-dependent mitophagy and impeding caspase3/GSDMEdependent pyroptosis[J]. Exp Neurol, 2023, 367:114463.
[22] Joshua TE, Janice CM, Sonia DC, et al. Neuronal loss and inflammol/Lation preceding fibrillary tau pathology in a rat model with early humanlike tauopathy[J]. Neurobiol Dis, 2023, 187:106317.
[23] Zhang GJ, Wang Y, Li JL, et al. Effects of electroacupuncture on mitophagy mediated by SIRT3/PINK1/Parkin pathway in Parkinson’s disease mice[J]. Zhen Ci Yan Jiu, 2024, 49(3):221-230.
[24] Palmieri M, Frati A, Santoro A, et al. Diffuse axonal injury: clinical prognostic factors, molecular experimental models and the impact of the trauma related oxidative stress. An extensive review concerning milestones and advances[J]. Int J Mol Sci, 2021, 22(19): 10865.
[25] Cruz R, Almaguer Melian W, Bergado Rosado JA. [Glutathione in cognitive function and neuro degeneration][J]. Rev Neurol, 2003, 36(9):877-886.
[26] Gao Q, Li D, Wang Y, et al. Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing[J]. Aging Clin Exp Res, 2024, 36(1):28.
[27] Di Marzo V, Stella N, Zimmol/Ler A, et al. Endocannabinoid signalling and the deteriorating brain[J]. Nat Rev Neurosci, 2015, 16(1):30-42.
[28] Papa A, Pasquini S, Contri C, et al. Polypharmacological approaches for CNS diseases: focus on endocannabinoid degradation inhibition[J]. Cells, 2022, 11(3):471.
|