[1]Guo T, Hebrok M. Stem cells to pancreatic beta-cells: new sources for diabetes cell therapy[J]. Endocr Rev, 2009, 30(3): 214-227.
[2]Ma X, Jain NM, Hitscherich P, et al. Stem cell-derived insulin- producing cells in 3D engineered tissue in a perfusion flow bioreactor[J]. Tissue Eng Part A, 2021, 27 (17-18): 1182-1191.
[3]Refaie AF, Elbassiouny BL, Kloc M, et a1. From mesenchymal stromal/stem cells to insulin-producing cells: immunological considerations [J]. Front Immunol, 2021, 12:690623.
[4]Camara BOS, Bertassoli BM, Ocarino NM, et a1. Differentiation of mesenchymal stem cells from humans and animals into insulin-producing cells: an overview in vitro induction forms[J]. Curr Stem Cell Res Ther, 2021, 16(6): 695-709.
[5]Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[6]Wang T, Hou RB, Pan X. Bioinformatic analyses of the miRNA-mRNA regulatory network during induction of insulin- producing cells[J]. Journal of Medical Information, 2023, 36(6): 8-13. (in Chinese)
王涛, 侯润博, 潘鑫. 基于生物信息学分析胰岛素分泌细胞诱导过程中miRNA-mRNA调控网络[J]. 医学信息, 2023, 36(6): 8-13.
[7]Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.
[8]Chen BZ, Yu SL, Singh S, et al. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells[J]. Cell Biol Int, 2011, 35(1): 29-37.
[9]Hashemitabar M, Heidari E. Redefining the signaling pathways from pluripotency to pancreas development: in vitro β-cell differentiation[J]. J Cell Physiol, 2019, 234(6):7811-7827.
[10]Liao X, Xue H, Wang YC, et a1. Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions[J]. J Cell Sci, 2013, 126(Pt 17):3848-3861.
[11]Maruoka Y, Ohbayashi N, Hoshikawa M, et a1. Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo[J]. Mech Dev, 1998, 74(1-2):175-177.
[12]Boylan M, Anderson MJ, Ornitz DM, et a1. The Fgf8 subfamily (Fgf8, Fgf17 and Fgf18) is required for closure of the embryonic ventral bodywall[J]. Development, 2020, 147(21): dev189506.
[13]Dettmer R, Cirksena K, Münchhoff J, et a1. FGF2 inhibits early pancreatic lineage specification during differentiation of human embryonic stem cells[J]. Cells, 2020, 9(9): 1927.
[14]Smyth I, Du X, Taylor MS, et a1. The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis[J]. PNAS, 2004, 101(37): 13560-13565.
[15]Kiyozumi D, Yaguchi S, Yaguchi J, et a1. Human disease- associated extracellular matrix orthologs ECM3 and QBRICK regulate primary mesenchymal cell migration in sea urchin embryos[J]. Exp Anim, 2021, 70(3): 378-386.
[16]Teo AK, Ali Y, Wong KY, et a1. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells[J]. Stem Cells, 2012, 30(4): 631-642.
[17]Skelton RJ, Brady B, Khoja S, et a1. CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells[J]. Stem Cell Reports, 2016, 6(1): 95-108.
[18]Moon SY, Eun HJ, Baek SK, et a1. Activation-Induced cytidine deaminase induces DNA demethylation of pluripotency genes in bovine differentiated cells[J]. Cell Reprogram, 2016, 18(5):298-308.
[19]Fu Y, Zhou Z, Wang H, et a1. IFITM1 suppresses expression of human endogenous retroviruses in human embryonic stem cells[J]. FEBS Open Bio, 2017, 7(8): 1102-1110.
[20]Grow EJ, Flynn RA, Chavez SL, et a1. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells[J]. Nature, 2015, 522(7555): 221-225.
[21]Firat-karalar EN, Sante J, Elliott S, et al. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome[J]. J Cell Sci, 2014, 127(Pt 19): 4128-4133.
[22]Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody- based proteomics[J]. Mol Cell Proteomics, 2014, 13(2):397-406.
[23]Zorn AM, Wells JM. Vertebrate endoderm development and organ formation[J]. Annu Rev Cell Dev Biol, 2009, 25:221-251.
[24]Bastidas-ponce A, Scheibner K, Lickert H, et a1. Cellular and molecular mechanisms coordinating pancreas development[J]. Development, 2017, 144(16): 2873-2888.
[25]Liu FH, Hou WY, Liang JD, et al. Bioinformatics analysis of the microRNAs and target genes of microRNAs in salivary adenoid cystic carcinoma[J]. Acta Anatomica Sinica, 2021, 52(4): 601-608. (in Chinese)
刘发煇, 侯婉云, 梁家东, 等. 唾液腺腺样囊性癌中相关微小RNAs及其靶基因的生物信息学分析[J]. 解剖学报, 2021, 52(4): 601-608.
[26]Lu Y, Li Y, Li G, et a1. Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis[J]. Mol Med Rep, 2020, 22(3): 1868-1882.
[27]Rahman MH, Peng S, Hu X, et a1. A network-based bioinformatics approach to identify molecular biomarkers for type 2 diabetes that are linked to the progression of neurological diseases[J]. Int J Environ Res Public Health, 2020, 17(3): 1035.
|