[1]Guerrero-Pérez F, Pia Marengo A, Vidal N, et al. Primary tumors of the posterior pituitary: a systematic review[J]. Rev Endocr Metab Disord, 2019, 20(2): 219-238.
[2]Hu Z, Li Z, Ma Z, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7):701-708.
[3]Coleman RE, Guise TA, Lipton A, et al. Advancing treatment for metastatic bone cancer: consensus recommendations from the second cambridge conference[J]. Clin Cancer Res, 2008, 14(20): 6387-6395.
[4]Morello E, Martano M, Buracco P. Biology, diagnosis and treatment of canine appendicular osteosarcoma: similarities and differences with human osteosarcoma[J]. Vet J, 2011, 189(3):268-277.
[5]Dorfman HD, Czerniak B. Bone cancers[J]. Cancer, 1995, 75(Suppl): 203-210.
[6]Ottaviani G, Jaffe N. The epidemiology of osteosarcoma[J]. Cancer Treat Res, 2009,152:3-13.
[7]Ahmed, M Seraj R, Shamsul Islam SM. The k-means algorithm: a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
[8]Chandra, MA,Bedi SS. Survey on SVM and their application in image classification[J]. Int J Inf Technol, 2021,13(5): 1-11.
[9]Kuang D, Michoski C. SEER-net: simple EEG-based recognition network[J]. Biomed Signal Process Control, 2023, 83: 104620.
[10]Qin X, Xu D, Dong X, et al. EEG signal classification based on improved variational mode decomposition and deep forest[J]. Biomed Signal Process Control, 2023, 83: 104644.
[11]Zhang H, Song R, Wang L, et al. Classification of brain disorders in rs-fMRI via local-to-global graph neural networks[J]. IEEE Trans Med Imaging, 2023, 42(2): 444-455.
[12]Mei J, Cheng MM, Xu G, et al. SANet: a slice-aware network for pulmonary nodule detection[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(8): 4374-4387.
[13]Zhao D, Liu Y, Yin H, et al. An attentive and adaptive 3D CNN for automatic pulmonary nodule detection in CT image[J]. Expert Syst Appl, 2023,211: 118672.
[14]Yi L, Zhang L, Xu X, et al. Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories[J]. IEEE Trans Med Imaging, 2023, 42(1): 317-328.
[15]Liu Z, Xiong R, Jiang T. CI-net: clinical-inspired network for automated skin lesion recognition[J]. IEEE Trans Med Imaging, 2023,42(3): 619-632.
[16]Abdar M, Samami M, Mahmoodaba SD, et al. Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning[J]. Comput Biol Med, 2021, 135: 104418.
[17]Balaha HM, Hassan A. Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm[J]. Neural Comput Appl, 2023,35(1): 815-853.
[18]Xu Z, Niu K, Tang S, et al. Bone tumor necrosis rate detection in few-shot x-rays based on deep learning[J]. Comput Med Imaging Graph, 2022,102: 102141.
[19]Xue S, Liu Z, Chen F, et al. Accelerating diffusion sampling with optimized time steps[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2024: 8292-8301.
[20]Graikos A, Yellapragada S, Le MQ, et al. Learned representation-guided diffusion models for large-image generation[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2024: 8532-8542.
[21]Zhan, C, Lin, Y, Wang, G, et al. MedM2G: unifying medical multi-modal generation via cross-guided diffusion with visual invariant[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2024: 11502-11512.
|