解剖学报 ›› 2025, Vol. 56 ›› Issue (1): 30-36.doi: 10.16098/j.issn.0529-1356.2025.01.004

• 肿瘤学专栏 • 上一篇    下一篇

基于多尺度病变注意力网络的骨肉瘤化疗效果影像评估

臧杰宋泽群汤振宇何方舟丁朝伟汪凌峰2* 汤小东1*   

  1. 1.北京大学人民医院骨肿瘤科,北京100044; 2.北京化工大学信息科学与技术学院,北京100029;3.北京航空航天大学计算机学院,北京100191
  • 收稿日期:2024-07-01 修回日期:2024-10-27 出版日期:2025-02-06 发布日期:2025-02-06
  • 通讯作者: 汪凌峰 汤小东 E-mail:lfwang@buct.edu.cn
  • 基金资助:
    北京大学医学部引导专项经费;中央高校基本科研业务费专项资金资助

Imaging assessment of osteosarcoma chemotherapy efficacy based on multi-scale lesion attention network

ZANG Jie1  SONG Ze-qun2  TANG Zhen-yu HE Fang-zhou DING Chao-wei1  WANG Ling-feng2* TANG Xiao-dong1*   

  1. 1.Department of Bone Oncology, People’s Hospital of Peking University, Beijing 100044, China; 
    2.School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
    3.School of Computer Science, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

  • Received:2024-07-01 Revised:2024-10-27 Online:2025-02-06 Published:2025-02-06
  • Contact: WANG Ling-feng TANG Xiao-dong E-mail:lfwang@buct.edu.cn

摘要: 目的 针对现有方法骨肉瘤评估精度低的问题,提出一种基于深度学习的高精度骨肉瘤化疗效果影像评估方法用于临床治疗。方法骨肉瘤发病率低,导致其影像数据规模小,且数据类别存在不平衡问题。本研究结合深度学习与临床医疗信息,结合了BoneGAN的骨肉瘤生成模块和尺度病变信息捕获模块,提出基于多尺度病变注意力网络的骨肉瘤化疗效果的深度学习评估网络OMLA-Net,通过预训练与泛化损失训练,实现了集成数据增广与聚焦病变信息的计算机辅助骨肿瘤评估。结果 本研究以40例骨肉瘤磁共振医学影像数据为基础,在生成的数据集上进行对比试验,OMLA-Net评估的准确率和F1分数等评估效果 方面优于SOTA方法Conv-LSTM-GAN,且差异具有统计学意义(P<0.05);后续的K-fold交叉验证消融实验进一步证明了OMLA-Net提出的各个模块的有效性。结论 OMLA-Net能够有效地进行骨肉瘤化疗效果影像评估,为未来的临床应用提供了新的思路。


关键词: 骨肉瘤, 化疗评估, 临床应用, 多尺度病变注意力

Abstract:

Objective To propose a high-precision deep learning-based image assessment method  of osteosarcoma chemotherapy efficacy for clinical treatment, as existing methos have low accuracy of osteosarcoma assessment.   Methods The low incidence of osteosarcoma led to the small scale of its imaging data and the problem of imbalance in data categories. This study combined deep learning with clinical medical information, combined the bone sarcoma generation module of BoneGAN and the scale lesion information capture module, and proposed OMLA-Net, a deep learning assessment network for chemotherapy effect of bone sarcoma based on multi-scale lesion attention network, which achieved computer-aided bone tumor assessment with integrated data augmentation and focused lesion information through pre-training and generalized loss training. Results  In this study, 40 cases of osteosarcoma MRI data were used as the basis for the comparison test on the generated dataset, and the OMLA-Net assessment outperformed the SOTA method  Conv-LSTM-GAN in terms of the assessment effects such as accuracy and F1 scores, and the difference was statistically significant (P<0.05); the subsequent K-fold cross-validation ablation experiments further demonstrated the effectiveness of each module proposed by OMLA-Net.   Conclusion   OMLA-Net can effectively perform the impact assessment of chemotherapy effect on osteosarcoma, which provides a new idea for subsequent clinical application.

Key words: Osteosarcoma, Chemotherapy assessment, Clinical application, Multiscale lesion attention 

中图分类号: