[1]Fazl A, Fleisher J. Anatomy, physiology, and clinical syndromes of the basal ganglia: a brief review [J]. Semin Pediatr Neurol, 2018, 25: 2-9.
[2]Chuhma N, Tanaka KF, Nagai T. The physiology and pathophysiology of basal ganglia: from signal transduction to circuits [J]. Neurochem Int, 2019, 131: 104544.
[3]Zhai S, Cui Q, Simmons DV, et al. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson’s disease [J]. Curr Opin Neurobiol, 2023, 83: 102798.
[4]Wang ZhG, Liu W. Analysis of the difference in gene expression and mutation of glioblastoma in different age groups by using the transcriptional and exome sequencing[J]. Acta Anatomica Sinica, 2019, 50(1): 8-12.(in Chinese)
王志刚,刘伟.应用转录组和外显子组测序分析不同年龄组的胶质母细胞瘤中基因表达与突变的差异[J].解剖学报, 2019, 50(1): 8-12.
[5]Zhang Z, Wei S, Du H, et al. Zfhx3 is required for the differentiation of late born D1-type medium spiny neurons [J]. Experimental Neurology, 2019, 322: 113055.
[6]Rebeillard F, Ddgois S, Pietrancosta N, et al. The Orphan GPCR Receptor, GPR88, Interacts with Nuclear Protein Partners in the Cerebral Cortex [J]. Cerebral Cortex, 2022, 32(3): 479-489.
[7]Reid KM, Steel D, Nair S, et al. Loss-of-function variants in DRD1 in infantile parkinsonism-dystonia [J]. Cells, 2023, 12(7):1046.
[8]Cheng ZY, Hu Y H, Xia QP, et al. DRD1 agonist A-68930 improves mitochondrial dysfunction and cognitive deficits in a streptozotocin-induced mouse model [J]. Brain Res Bull, 2021, 175: 136-149.
[9]Mcsherry M, Masih KE, Elcioglu NH, et al. Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability [J]. PLoS One, 2018, 13(11): e0208324.
[10]Reith MEA, Kortagere S, Wiers CE, et al. The dopamine transporter gene SLC6A3: multidisease risks [J]. Molecular Psychiatry, 2022, 27(2): 1031-1046.
[11]Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity [J]. Int J Mol Sci, 2020, 21(13):4638.
[12]Yu D, Febbo IG, Maroteaux MJ, et al. The Transcription factor Shox2 shapes neuron firing properties and suppresses seizures by regulation of key ion channels in thalamocortical neurons [J]. Cerebral Cortex, 2021, 31(7): 3194-3212.
[13]liu H, Wang C, Yu M, et al. TPH2 in the dorsal raphe nuclei regulates energy balance in a sex-dependent manner [J]. Endocrinology, 2021, 162(1): bqaa183.
[14]Liu ZL, Wang XQ, Liu MF, et al. Meta-analysis of association between TPH2 single nucleotide poiymorphism and depression [J]. Neurosci Biobehav Rev, 2022, 134: 104517.
[15]Choi JY, Cho H, Ahn SJ, et al. Off-target (18)F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation [J]. J Nucl Med, 2018, 59(1): 117-120.
[16]Lotze M, Domin M, Gerlach FH, et al. Novel findings from 2,838 Adult Brains on Sex Differences in Gray Matter Brain Volume [J]. Scientific Reports, 2019, 9(1): 1671.
[17]Kaasinen V, Joutsa J, Noponen T, et al. Effects of aging and gender on striatal and extrastriatal [123I]FP-CIT binding in Parkinson’s disease [J]. Neurobiol Aging, 2015, 36(4): 1757-1763.
[18]Malén T, Karjalainen T, Isojärvi J, et al. Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort [J]. Neuroimage, 2022, 255: 119149.
[19]Bourque M, Dluzen DE, DI PAOLO T. Neuroprotective actions of sex steroids in Parkinson’s disease [J]. Frontiers in Neuroendocrinol, 2009, 30(2): 142-157.
[20]Mariani E, Lombardini L, Facchin F, et al. Sex-specific transcriptome differences in substantia nigra tissue:a meta-analysis of parkinson’s disease data [J]. Genes, 2018, 9(6): 275.
[21]Jamwal S, Blackburn JK, Elsworth JD. Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain [J]. Biol Sex Differ, 2023, 14(1): 65.
[22]Li D, Liang J, Guo W, et al. Integrative analysis of DNA methylation and gene expression data for the diagnosis and underlying mechanism of Parkinson’s disease [J]. Front Aging Neurosci, 2022, 14: 971528.
[23]Zhang Y, Liu C. Transcriptomic analysis of mRNAs in human whole blood identified age-specific changes in healthy individuals [J]. Medicine (Baltimore), 2023, 102(49): e36486.
[24]Zhong B, Huang X, Zheng Y, et al. The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons [J]? Future Med Chem, 2021, 13(23): 2083-2105.
[25]Marsili L, Duque KR, Bode RL, et al. Uncovering essential tremor genetics: the promise of longread sequencing [J]. Front Neurol, 2022, 13: 821189.
[26]Wei ZB, Yuan YF, Jaouen F, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation [J]. Autophagy, 2016, 12(7): 1168-1179.
[27]Balestrino R, Schapira AHV. Parkinson disease [J]. Eur J Neurol, 2020, 27(1): 27-42.
[28]Lundblad M, Decressac M, Mattsson B, et al. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons [J]. Proc Natl Acad Sci USA, 2012, 109(9): 3213-3219.
[29]Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson’s disease: focus on the peripheral immune component [J]. Trends Neurosci, 2023, 46(10): 863-878.
[30]Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference [J]? J Parkinsons Dis, 2019, 9(3): 501-515.
[31]Gillies GE, Pienaar IS, Vohra S, et al. Sex differences in Parkinson’s disease [J]. Front Neuroendocrinol, 2014, 35(3): 370-384.
[32]Shen KZ, Johnson SW. Ca2+ influx through NMDA-gated channels activates ATP-sensitive K+ currents through a nitric oxide-cGMP pathway in subthalamic neurons [J]. J Neurosci, 2010, 30(5): 1882-1893.
|