[1] Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, et al. Molecular mechanisms of neuroinflammation in aging and Alzheimer’s disease progression[J]. Int J Mol Sci, 2023, 24(3):1869.
[2] Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease[J]. Nature Aging, 2021, 1(8): 634-650.
[3] Wang HJ, Tan YZh. Morphological features and functional implications of autophagy[J]. Acta Anatomica Sinica, 2009, 40 (5): 844-849.(in Chinese)
王海杰, 谭玉珍. 细胞自噬的形态学特征和功能意义[J]. 解剖学报, 2009, 40(5): 844-849.
[4] Kaur S, Changotra H. The beclin 1 interactome: modification and roles in the pathology of autophagy-related disorders[J]. Biochimie, 2020, 175: 34-49.
[5] Tanida I, Ueno T, Kominami E. LC3 and autophagy[J]. Methods Mol Biol, 2008, 445: 77-88.
[6] Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem, 2007, 282(33): 24131-24145.
[7] Zhang W, Xu C, Sun J, et al. Impairment of the autophagy-lysosomal pathway in Alzheimer’s diseases: pathogenic mechanisms and therapeutic potential[J]. Acta Pharm Sin B, 2022,12(3):1019-1040.
[8] Mu L, Xia D, Cai J, et al. Treadmill exercise reduces neuroinflammation, glial cell activation and improves synaptic transmission in the prefrontal cortex in 3 × Tg-AD mice[J]. Int J Mol Sci, 2022, 23(20):12655.
[9] Mu L, Cai J, Gu B, et al. Treadmill exercise prevents decline in spatial learning and memory in 3×Tg-AD mice through enhancement of structural synaptic plasticity of the hippocampus and prefrontal cortex[J]. Cells, 2022,11(2): 244.
[10] Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory[J]. Nat Protoc, 2006,1(2):848-858.
[11] Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice[J]. J Vis Exp, 2017, 30(126): 55718.
[12] Wang D, Di X, Fu L, et al. Analysis of serum β-amyloid peptides, α2-macroglobulin, complement factor H, and clusterin levels in APP/PS1 transgenic mice during progression of Alzheimer’s disease[J]. Neuroreport, 2016,27(15):1114-1119.
[13] Wang DS, Dickson DW, Malter JS. Beta-amyloid degradation and Alzheimer’s disease[J]. J Biomed Biotechnol, 2006,2006(3):58406.
[14] Chen CY, Yang GY, Tu HX, et al. The cognitive dysfunction of claustrum on Alzheimer’s disease: a minireview[J]. Front Aging Neurosci,2023,15:1109256.
[15] Cheng N, Jiao S, Gumaste A, et al. APP overexpression causes Aβ-independent neuronal death through intrinsic apoptosis pathway[J]. eNeuro, 2016,3(4): ENEURO.0150-1610. 2016.
[16] Reddy PH, Oliver DM. Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in Alzheimer’s disease[J]. Cells, 2019,8(5): 488.
[17] Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease[J]. PLoS One, 2010,5(4): e9979.
[18] Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice[J]. J Clin Invest, 2008,118(6):2190-2199.
[19] Gu X, Li Y, Chen K, et al. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway[J]. J Cell Mol Med, 2020,24(13):7515-7530.
[20] Dong W, Cui MC, Hu WZ, et al. Genetic and molecular evaluation of SQSTM1/p62 on the neuropathologies of Alzheimer’s disease[J]. Front Aging Neurosci, 2022,14:829232.
|