[1]Halliday GM, McCann H. The progression of pathology in Parkinson’S disease[J]. Ann N Y Acad Sci, 2010, 1184(2):188-195.
[2]Yao N, Xu QY. The locus coeruleus pathology and its role in the pathogenesis of Parkinsons disease [J].Acta Anatomica Sinica,2014, 45(2):291-296.(in Chinese)
姚宁,徐群渊. 蓝斑核在帕金森病发病中的病理改变及其作用[J]. 解剖学报,2014,45 (2):291-296.
[3]Breit S, Wachter L, Schmid-Bielenberg D, et al. Efective long-term subthalamic stimulation in PARK8 positive Parkinson’s disease[J]. J Neurol, 2010, 257(7):1205-1207.
[4]Clark LN, Wang Y, Karlins E, et al. Frequency of LRRK2 mutations in early-and late-onset Parkinson disease[J]. Neurology, 2006, 67(10):1786-1791.
[5]Di Fonzo A, Rohé CF, Ferreira J, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease[J]. Lancet, 2005, 365(9457):412-415.
[6]Zabetian CP, Samii A, Mosley AD, et al. A clinic-based study of the LRRK2 gene in Parkinson disease yields new mutations[J]. Neurology, 2005, 65(5):741-744.
[7]Aasly JO, Toft M, Fernandez-Mata I, et al. Clinical features of LRRK2-associated Parkinson’s disease in central Norway[J]. Ann Neurol, 2005, 57(5):762-765.
[8]Ishihara L, Warren L, Gibson R,et al. Clinical features of Parkinson disease with homozygous leucine-rich repeat kinase 2 G2019S mutations[J]. Arch Neurol, 2006, 63(9):1250-1254.
[9]Grunblatt E, Mandel S, Jacob-Hirsch J,et al. Gene expression profiling of parkinsonian substan-tia nigra pars compacta;alterations in ubiquitine-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhe- sion/cellular matrix and vesicle trafficking genes[J]. Neural Transm, 2004,111 (12):1543-1573.
[10]Zhang Y, James M, Middleton FA,et al. Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism and sig- nalling pathways, and suggests novel disease mechanisms. [J].Am J Med Genet B Neuropsychiatr Genet, 2005,137B (1):5-16.
[11]Miller RM, Kiser GL, Kaysser TM,et al. Robust deregulation of gene expression in substantia nigra and striatum in Parkinson’s disease[J]. Neurobiol Dis,2006, 21 (2):305-313.
[12]Li CF, Wang JM, Kang HY, et al. Characterization of gene amplification-driven SKP2 overexpression in myxofibrosarcoma: potential implications in tumor progression and therapeutics[J]. Clin Cancer Res,2012, 18(6):1598-1610.
[13]Drobnjak M, Melamed J, Taneja S, et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients[J]. Clin Cancer Res,2003, 9(7):2613-2619.
[14]Gstaiger M, Jordan R, Lim M, et al. Skp2 is oncogenic and overexpressed in human cancers[J]. Proc Natl Acad Sci USA, 2001, 98(9):5043-5048.
[15]Li BL, Lu W, Yang Q, et al. Skp2 regulates receptor through ubiquitin-mediated degradation independent ofAkt/mTOR pathways in prostate cancer[J]. Prostate, 2014, 74(4):421-432.
[16]Migita K, Takayama T, Matsumoto S, et al. Prognostic impact of RING box protein-1 (RBX1) expression in gastric cancer[J]. Gastric Cancer, 2014, 17(4):601-609.
[17]Kanatsu-Shinohara M, Onoyama L, Nakayama KI, et al. Skp1-Cullin-F-box(SCF)-type ubiquitin ligase FBXW7 negatively regulates spermatogonial stem cell self-renewal[J]. Proc Natl Acad Sci USA, 2014, 111(24):8826-8831.
[18]Fan YC, Zhu YS, Mei PJ, et al. Cullin1 regulates proliferation, migration and invasion of glioma cells[J]. Med Oncol, 2014, 31(10):227.
[19]Nag AS, Baqchi S, Raychaudhuri P. Cul4A physically associates with MDM2 and participates in the proteolysis of p53[J].Cancer Res, 2004, 64(22):8152-8155.
[20]Saucedo-Cuevas LP, Ruppen I, Ximénez-Embún P, et al. CUL4A contributes to the biology of basal-like breast tumors through modulation of cell growth and antitumor immune response[J]. Oncotarget, 2014, 5(8):2330-2343. |