[1] Zhang SY, Ji SX, Bai XM, et al. L-3-n-butylphthalide attenuates cognitive deficits in db/db diabetic mice [J]. Metab Brain Dis, 2019, 34(1):309-318.
[2] Khalaf SS, Hafez MM, Mehanna ET, et al. Combined vildagliptin and memantine treatment downregulates expression of amyloid precursor protein, and total and phosphorylated tau in a rat model of combined Alzheimer’s disease and type 2 diabetes[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(6):685-695.
[3] Akomolafe A,Beiser A,Meigs JB, et al. Diabetes mellitus and risk of developing Alzheimer disease:results from the Framingham study [J]. Arch Neurol,2006,63(11):1551-1555.
[4] Hempstead BL. Dissecting the diverse actions of pro- and mature neurotrophins [J]. Curr Alzheimer Res, 2006,3(1):19-24.
[5] Huang L, Yan S, Luo L, et al. Irisin regulates the expression of BDNF and glycometabolism in diabetic rats [J]. Mol Med Rep, 2019, 19(2):1074-1082.
[6] Sun ZC, Yu J, Liu YL, et al. Reduced serum levels of brain-derived neurotrophic factor are related to mild cognitive impairment in Chinese patients with type 2 diabetes mellitus [J]. Ann Nutr Metab, 2018,73(4):271-281.
[7] Chen Y, Zeng J, Cen L, et al. Multiple roles of the p75 neurotrophin receptor in the nervous system [J]. J Int Med Res, 2009, 37(2):281-288.
[8] Xu SY, Jiang J, Pan A, et al. Sortilin: a new player in dementia and Alzheimer-type neuropathology [J]. Biochem Cell Biol, 2018, 96(5):491-497.
[9] Yang Y, Gao L. Celecoxib Alleviates memory deficits by downregulation of COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a diabetic rat model [J]. J Mol Neurosci, 2017, 62(2):188-198.
[10]Sima AA, Li ZG. The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats[J]. Diabetes, 2005, 54(5):1497-1505.
[11]Patel SS, Gupta S, Udayabanu M. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice[J]. Metab Brain Dis, 2016,31(3):601-611.
[12]Yau SY, Lee TH, Li A, et al. Adiponectin mediates running-restored hippocampal neurogenesis in streptozotocin-induced type 1 diabetes in mice [J]. Front Neurosci, 2018, 12:679.
[13]Li Z, Hao S, Yin H, et al. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice [J]. Behav Brain Res, 2016,305:265-277.
[14]Xu Y, Cao W, Zhou M, et al. Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex[J]. Behav Brain Res, 2015, 286:1-10.
[15]Zheng X, Ma S, Kang A, et al. Chemical dampening of Ly6C(hi) monocytes in the periphery produces anti-depressant effects in mice[J]. Sci Rep, 2016, 6:19406.
[16]Wang Zh,Huang YJ,Nai AT, et al. Fluoxetine improved the depression-like behavior induced by chronic restraint stress by up-regulation the expression of bromodomain-containing protein 4 in hippocampus of mouse[J].Acta Anatomica Sinica, 2019, 50(1):18-23. (in Chinese)
王贞,黄怡佳,乃爱桃,等.氟西汀通过上调海马内溴结构域蛋白4的表达改善慢性束缚应激所致小鼠的抑郁样行为[J].解剖学报,2019, 50(1):18-23.
[17]Luo YW, Xu Y, Cao WY, et al. Insulin-like growth factor 2 mitigates depressive behavior in a rat model of chronic stress [J]. Neuropharmacology, 2015, 89:318-324.
[18]Cao WY, Xu Y, Luo YW, et al. Activation of ERK1/2 is required for normal response of isosexual social interactions in male rats [J].Brain Res, 2013,1538;51-60.
[19]Zhe Q, Sulei W, Weiwei T, et al. Effects of Jiaotaiwan on depressive-like behavior in mice after lipopolysaccharide administration [J]. Metab Brain Dis, 2017, 32(2):415-426.
[20]Flores-Gomez AA, de Jesus GM, Flores G. Consequences of diabetes mellitus on neuronal connectivity in limbic regions [J]. Synapse, 2019, 73(3):e22082.
[21]Arioglu IE, Ellenbroek JH, Michel MC. A systematic review of urinary bladder hypertrophy in experimental diabetes: part Ⅰ. streptozotocin-induced rat models[J]. Neurourol Urodyn, 2018, 37(4):1212-1219.
[22]Trabjerg E, Abu-Asad N, Wan Z, et al. Investigating the conformational response of the sortilin receptor upon binding endogenous peptide-and protein ligands by hdx-ms [J]. Structure, 2019, 27(7): 1103-1113.
[23]Li Q, Ma W, Li T. Sortilin as a new membrane inhibitor of EGFR trafficking for overcoming resistance to EGFR inhibitors in non-small cell lung cancer[J]. J Thorac Dis, 2018, 10(Suppl 26):S3186-S3191.
[24]Xu SY, Jiang J, Pan A, et al. Sortilin: a new player in dementia and Alzheimer-type neuropathology [J]. Biochem Cell Biol, 2018,96(5):491-497.
[25]Guo Shiwen, Han Yuliang, Nao Gang, et al. Nerve growth factor precursor and sortilin effects on perihematomal brain tissue and the relationship to secondary cell apoptosis[J]. Neural Regen Res, 2010,5(1):10-14.
[26]Luo ShSh, Gao M, Wang ChL, et al. Effects of enviromental enerichment on the expression of sortiliu in primary visual cortex and lateral geniculate body in amblypia mice[J]. Chinese Journal of Neuroauatomy, 2018, 34(6): 727-731. (in Chinese)
罗诗诗, 高明, 王昶仑, 等. 丰富环境对单眼剥夺小鼠视皮质与外侧膝状体Sortilin表达的影响[J]. 神经解剖学杂志, 2018,34(6):727-731.
[27]Chen ZY, Ieraci A, Teng H, et al. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway[J]. J Neurosci, 2005,25(26):6156-6166.
[28]Roulot M, Minelli A, Bortolomasi M, et al. Increased serum levels of sortilin-derived propeptide after electroconvulsive therapy in treatment-resistant depressed patients[J]. Neuropsychiatr Dis Treat, 2018, 14:2307-2312.
[29]Tann JY, Wong L, Sajikumar S, et al. Abnormal TDP-43 function impairs activity-dependent BDNF secretion, synaptic plasticity, and cognitive behavior through altered Sortilin splicing[J].EMBO J,2019,38(5): e100989.
|