[1]Lapointe S,Perry A,Butowski NA. Primary brain tumours in adults[J]. Lancet, 2018, 392(10145): 432-446.
[2]Ostrom QT,Patil N,Cioffi G,et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017[J]. Neuro Oncol, 2020, 22(12 Suppl 2):iv1-iv96.
[3]Stupp R,Mason WP,van den Bent MJ,et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10): 987-996.
[4]Yasinjan F,Xing Y,Geng H,et al. Immunotherapy: a promising approach for glioma treatment[J]. Front Immunol, 2023, 14: 1255611.
[5]Quail DF,Joyce JA. The microenvironmental landscape of brain tumors[J]. Cancer Cell,2017,31(3):326-341.
[6]Hoogstrate Y,Draaisma K,Ghisai SA,et al. Transcriptome analysis reveals tumor microenvironment changes in glioblastoma[J]. Cancer Cell,2023,41(4):678-692.e7.
[7]Engelhardt B,Vajkoczy P,Weller RO. The movers and shapers in immune privilege of the CNS[J]. Nat Immunol,2017,18(2):123-131.
[8]Belousov A,Titov S,Shved N,et al. The extracellular matrix and biocompatible materials in glioblastoma treatment[J].Front Bioeng Biotechnol,2019,7:341.
[9]Wei R,Zhou J,Bui B,et al. Glioma actively orchestrate a self-advantageous extracellular matrix to promote recurrence and progression[J]. BMC Cancer,2024,24(1):974.
[10]Di Vito A,Donato A,Bria J,et al. Extracellular matrix structure and interaction with immune cells in adult astrocytic tumors[J]. Cell Mol Neurobiol,2024,44(1):54.
[11]Collado J,Boland L,Ahrendsen JT,et al. Understanding the glioblastoma tumor microenvironment: leveraging the extracellular matrix to increase immunotherapy efficacy[J].Front Immunol,2024,15:1336476.
[12]Pietrobono D,Giacomelli C,Marchetti L,et al. High adenosine extracellular levels induce glioblastoma aggressive traits modulating the mesenchymal stromal cell secretome[J].Int J Mol Sci, 2020,21(20):7706.
[13]Sun R,Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications[J]. Cancer Metastasis Rev,2022,41(4):871-898.
[14]Xuan W,Lesniak MS,James CD,et al. Context-dependent glioblastoma-macrophage/microglia symbiosis and associated mechanisms[J]. Trends Immunol,2021,42(4):280-292.
[15]Cheng N,Bai X,Shu Y,et al. Targeting tumor-associated macrophages as an antitumor strategy[J].Biochem Pharmacol,2021,183:114354.
[16]Yekula A,Yekula A,Muralidharan K,et al. Extracellular vesicles in glioblastoma tumor microenvironment[J].Front Immunol,2020,10:3137.
[17]Dumas AA,Pomella N,Rosser G,et al. Microglia promote glioblastoma via mTOR-mediated immunosuppression of the tumour microenvironment[J].Embo J,2020,39(15):e103790.
[18]Hutter G,Theruvath J,Graef CM,et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma[J]. Proc Natl Acad Sci USA,2019,116(3):997-1006.
[19]Wu B,Zhan X,Jiang M. CD58 defines regulatory macrophages within the tumor microenvironment[J]. Commun Biol,2024,7(1):1025.
[20]Takenaka MC,Gabriely G,Rothhammer V,et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39[J].Nat Neurosci,2019,22(5):729-740.
[21]An W,Ren C,Yuan L,et al. High expression of SIGLEC7 may promote M2-type macrophage polarization leading to adverse prognosis in glioma patients[J]. Front Immunol,2024,15:1411072.
[22]Rivera-Ramos A,Cruz-Hernández L,Talaverón R,et al. Galectin-3 depletion tames pro-tumoural microglia and restrains cancer cells growth[J].Cancer Letters,2024,591:216879.
[23]Chen Z,Wang J,Peng P,et al. Hypoxia-induced TGFBI maintains glioma stem cells by stabilizing EphA2[J].Theranostics,2024,14(15):5778-5792.
[24]Mohme M,Schliffke S,Maire CL,et al. Immunophenotyping of newly diagnosed and recurrent glioblastoma defines distinct immune exhaustion profiles in peripheral and tumor-infiltrating lymphocytes[J].Clin Cancer Res,2018,24(17):4187-4200.
[25]Dapash M,Hou D,Castro B,et al. The interplay between glioblastoma and its microenvironment[J].Cells,2021,10(9):2257.
[26]Wing JB,Tanaka A,Sakaguchi S. Human FOXP3(+) regulatory T cell heterogeneity and function in autoimmunity and cancer[J]. Immunity,2019,50(2):302-316.
[27]Zhang S,Rao G,Heimberger A,et al. Fibrinogen-like protein 2: its biological function across cell types and the potential to serve as an immunotherapy target for brain tumors[J].Cytokine Growth Factor Rev,2023,69:73-79.
[28]Li C,Jiang P,Wei S,et al. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects[J].Mol Cancer,2020,19(1):116.
[29]Hato L,Vizcay A,Eguren I,et al. Dendritic cells in cancer immunology and immunotherapy[J].Cancers (Basel),2024,16(5):981.
[30]Zhou C,Ma L,Xu H,et al. Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity[J].Cell Res,2022,32(6):543-554.
[31]Friedmann-Morvinski D,Hambardzumyan D. Monocyte-neutrophil entanglement in glioblastoma[J].J Clin Invest,2023,133(1):e163451.
[32]Wen J,Liu D,Zhu H,et al. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy[J]. J Neuroinflammation,2024,21(1):226.
[33]Sun C,Wang S,Ma Z,et al. Neutrophils in glioma microenvironment: from immune function to immunotherapy[J].Front Immunol,2024,15:1393173.
[34]Salemizadeh Parizi M,Salemizadeh Parizi F,Abdolhosseini S,et al. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies[J]. Inflammopharmacology,2021,29(6):1613-1624.
[35]Lin H,Liu C,Hu A,et al. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives[J]. J Hematol Oncol,2024,17(1):31.
[36]Tian Y,Gao X,Yang X,et al. VEGFA contributes to tumor property of glioblastoma cells by promoting differentiation of myeloid-derived suppressor cells[J].BMC Cancer,2024,24(1):1040.
[37]Pant A,Hwa-Lin Bergsneider B,Srivastava S,et al. CCR2 and CCR5 co-inhibition modulates immunosuppressive myeloid milieu in glioma and synergizes with anti-PD-1 therapy[J].OncoImmunology,2024,13(1):2338965.
[38]Elguindy M,Young JS,Mondal I,et al. Glioma-immune cell crosstalk in tumor progression[J].Cancers (Basel),2024,16(2):308.
[39]Singh MK,Bhattacharya D,Chaudhuri S,et al. T11TS inhibits glioma angiogenesis by modulation of MMPs,TIMPs,with related integrin αv and TGF-β1 expressions[J].Tumour Biol,2014,35(3):2231-2246.
[40]Ye XZ,Xu SL,Xin YH,et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway[J].J Immunol,2012,189(1):444-453.
[41]Rosberg R,Smolag KI,Sjolund J,et al. Hypoxia-induced complement component 3 promotes aggressive tumor growth in the glioblastoma microenvironment[J].JCI Insight,2024,9(19):e179854.
[42]Mi Y,Guo N,Luan J,et al.The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment[J].Front Immunol,2020,11:737.
[43]Groth C,Hu X,Weber R,et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression[J].Br J Cancer,2019,120(1):16-25.
[44]Prager BC,Bhargava S,Mahadev V,et al. Glioblastoma stem cells: driving resilience through chaos[J].Trends Cancer,2020,6(3):223-235.
[45]Biserova K,Jakovlevs A,Uljanovs R,et al. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma[J].Cells,2021,10(3):621.
[46]Wang H,Yao L,Chen J,et al. The dual role of POSTN in maintaining glioblastoma stem cells and the immunosuppressive phenotype of microglia in glioblastoma[J]. J Exp Clin Cancer Res,2024,43(1):252.
[47]Yu T,Wang K,Wang J,et al. M-MDSCs mediated trans-BBB drug delivery for suppression of glioblastoma recurrence post-standard treatment[J]. J Control Release,2024,369:199-214.
[48]Rodriguez SMB,Tataranu LG,Kamel A,et al. Glioblastoma and immune checkpoint inhibitors: a glance at available treatment options and future directions[J]. Int J Mol Sci,2024,25(19):10765.
|