[1] Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035[J]. Diabetes Res Clin Pract, 2014,103(2): 137-149.
[2] Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2003,27(2): 283-290.
[3] Kern TS, Barber AJ. Retinal ganglion cells in diabetes[J]. J Physiol, 2008, 586(18): 4401-4408.
[4] Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865): 813-820.
[5] Barile GR, Pachydaki SI, Tari SR, et al. The RAGE axis in early diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2005, 46(8): 2916-2924.
[6] Wolin MS. Reactive oxygen species and the control of vascular function[J]. Am J Physiol Heart Circ Physiol, 2009, 296(3): H539-H549.
[7] Roy S, Trudeau K, Roy S, et al. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetic retinopathy: a mechanistic insight for high glucose-induced retinal cell death[J]. Curr Clin Pharmacol, 2013, 8(4):278-284.
[8] Tewari S, Santos JM, Kowluru RA. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy[J]. Antioxid Redox Signal, 2012, 17(3): 492-504. [9] Zhang M, An C, Gao Y, et al. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection[J]. Prog Neurobiol, 2013, 100: 30-47.
[10] Sandberg M, Patil J, D’Angelo B, et al. NRF2-regulation in brain health and disease: implication of cerebral inflammation[J]. Neuropharmacology, 2014, 79: 298-306.
[11] Bhakkiyalakshmi E, Sireesh D, Rajaguru P, et al. The emerging role of redox‐sensitive Nrf2‐Keap1 pathway in diabetes[J]. Pharmacol Res, 2015, 91: 104-114.
[12] Kowluru RA, Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2[J]. Free Radic Biol Med.,2017,103:155-164.
[13] Pang YL, Zhang WG, Zhang Y, et al. Role of Nrf2 in retinal cell protection[J]. Acta Anatomica Sinica,2017,48(5): 617-621.(in Chinese)
庞仪琳,张卫光,张艳,等.Nrf2对视网膜细胞保护作用的研究进展[J].解剖学报,2017,48(5): 617-621.
[14] He M, Pan H, Xiao C, et al. Roles for redox signaling by NADPH oxidase in hyperglycemia‐induced heme oxygenase‐1 expression in the diabetic retina[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 4092-4101.
[15] Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Prog Retin Eye Res, 2011,30(5):343-358.
[16] Santos JM, Mohammad G, Zhong Q, et al. Diabetic retinopathy, superoxide damage and antioxidants[J]. Curr Pharm Biotechnol, 12(3):352-361.
[17] He M, Pan H, Chang RC, et al. Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of lyciumbarbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage [J]. PLoS One, 2014, 9(1):e84800.
[18] Wei Y, Gong J, Yoshida T, et al. Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury[J]. Free Radic Biol Med, 2011, 51(1): 216-224.
[19] Yu Z, Lu B, Sheng Y, et al. Andrographolide ameliorates diabetic retinopathy by inhibiting retinal angiogenesis and inflammation[J]. Biochim Biophys Acta, 2015,1850(4):824-831.
[20] Xu Z, Wei Y, Gong J, et al. NRF2 plays a protective role in diabetic retinopathy in mice[J]. Diabetologia,2014,57(1):204-213.
[21] Geraldes P, Yagi K, Ohshiro Y, et al. Selective regulation of heme oxygenase-1 expression and function by insulin through IRS1/phosphoinositide 3-kinase/Akt-2 pathway[J]. J Biol Chem, 2008, 283(49):34327-34336.
[22] Pan H, He M, Liu R, et al. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway[J]. PLoS One, 2014,9(12): e114186.
|