解剖学报 ›› 2018, Vol. 49 ›› Issue (3): 412-418.doi: 10.16098/j.issn.0529-1356.2018.03.024
• 综述 • 上一篇
郭建林1,2* 闫培硕1,2 徐存拴1,2
收稿日期:
2017-12-26
修回日期:
2018-01-17
出版日期:
2018-06-06
发布日期:
2018-09-18
通讯作者:
郭建林
E-mail:gjianlin@yeah.net
基金资助:
GUO Jian-lin1,2* YAN Pei-shuo1,2 XU Cun-shuan1,2#br#
Received:
2017-12-26
Revised:
2018-01-17
Online:
2018-06-06
Published:
2018-09-18
Contact:
Guo Jian-lin
E-mail:gjianlin@yeah.net
摘要:
活性氧在细胞增殖、分化、凋亡中发挥着重要作用,氧化应激是机体内活性氧的生成和清除不平衡所引起的一种机体应激反应,低浓度的活性氧对细胞的生长和分化是有利的,可作为信号分子诱导细胞的增殖。研究表明,动物的肝、肌肉、心肌、神经、肢和尾等在受到损伤后,均具有一定的自身修复和再生能力,组织再生与人类疾病的发生及治疗密切相关,在这些过程中均有氧化应激的参与。我们概述了氧化应激在不同组织器官再生过程中的作用及其机制,为揭示组织再生机制和人类疾病的治疗提供理论依据。
郭建林 闫培硕 徐存拴. 氧化应激在组织再生中的作用的研究进展[J]. 解剖学报, 2018, 49(3): 412-418.
GUO Jian-lin1 YAN Pei-shuo XU Cun-shuan . Research progress of 0xidative stress in tissue regeneration[J]. Acta Anatomica Sinica, 2018, 49(3): 412-418.
[1]Paniker NV, Srivastava SK, Beutler E. Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress[J]. Biochimica et Biophysica Acta, 1970, 215(3): 456-460.
[2]Kmiecik B, Skotny A, Batycka M, et al. Influence of oxidative stress on tissue regeneration[J]. Polimery W Medycynie, 2013, 43(3): 191-197.
[3]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell B, 2007, 39(1): 44-84.
[4]Serras F. The benefits of oxidative stress for tissue repair and regeneration[J]. Fly, 2016, 10(3): 128-133.
[5]Vince AR, Hayes MA, Jefferson BJ, et al. Hepatic injury correlates with apoptosis, regeneration, and nitric oxide synthase expression in canine chronic liver disease[J]. Veterinary Pathol, 2014, 51(5): 932-945.
[6]Si M, Zhang L, Chaudhry MT, et al. Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance[J]. Appl Rnviron Microbiol, 2015, 81(8): 2781-2796.
[7]Finkel T. Signal transduction by mitochondrial oxidants[J]. J Biol Chem, 2012, 287(7): 4434-4440.
[8]Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response[J]. Biochimica et Biophysica Acta, 2006, 1757(9-10): 1371-1387.
[9]Sen CK, Roy S. Redox signals in wound healing[J]. Biochimica et Biophysica Acta, 2008, 1780(11): 1348-1361.
[10]Santabarbara-Ruiz P, Lopez-Santillan M, Martinez-Rodriguez I, et al. ROS-induced JNK and p38 signaling is required for unpaired cytokine activation during drosophila regeneration[J]. PLoS Genetics, 2015, 11(10): e1005595.
[11]Tonks NK. Redox redux: revisiting PTPs and the control of cell signaling[J]. Cell, 2005, 121(5): 667-670.
[12]Pang YL,Zhang WG,Zhang Y, et al. Role of NF-E2-related factor 2 in retinal cell protection [J]. Acta Anatomica Sinica,2017,48(5): 617-621. (in Chinese)
庞仪琳,张卫光,张艳 等.NF_E2相关因子2对视网膜细胞保护作用的研究进展[J].解剖学报,2017,48(5):617-621.
[13]Chen B, Lu Y, Chen Y, et al. The role of Nrf2 in oxidative stress-induced endothelial injuries[J]. J Endocrinol, 2015, 225(3): R83-99.
[14]Dayoub R, Vogel A, Schuett J, et al. Nrf2 activates augmenter of liver regeneration (ALR) via antioxidant response element and links oxidative stress to liver regeneration[J]. Mol Med, 2013, (19):237-244.
[15]Beyer TA, Xu W, Teupser D, et al. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance[J]. EMBO Journal, 2008, 27(1): 212-223.[16]Zou Y, Lee J, Nambiar SM, et al. Nrf2 is involved in maintaining hepatocyte identity during liver regeneration[J]. PLoS One, 2014, 9(9): e107423.
[17]Alizai PH, Bertram L, Fragoulis A, et al. In vivo imaging of antioxidant response element activity during liver regeneration after partial hepatectomy[J]. J Surg Res, 2016, 206(2): 525-535.
[18]Mercurio F, Manning AM. Multiple signals converging on NF-kappaB[J]. Curr Opin Cell Biol, 1999, 11(2): 226-232.
[19]Muriel P. NF-kappaB in liver diseases: a target for drug therapy[J]. JAT, 2009, 29(2): 91-100.
[20]Cook DJ, Patra B, Kuttippurathu L, et al. A novel, dynamic pattern-based analysis of NF-kappaB binding during the priming phase of liver regeneration reveals switch-like functional regulation of target genes[J]. Front Physiol, 2015, 6:189.
[21]Zhao WM, Qin YL, Niu ZP, et al. Branches of the NF-kappaB signaling pathway regulate proliferation of oval cells in rat liver regeneration[J]. Genet Mol Res, 2016, 15(4):gmr.15017750.
[22]Chang CF, Zhao WM, Mei JX, et al. Branches of NF-kappab signaling pathway regulate hepatocyte proliferation in rat liver regeneration[J]. Genet Mol Res, 2015, 14(3): 7643-7654.
[23]Yamada Y, Kirillova I, Peschon JJ, et al. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor[J]. Proc Natl Acad Sci USA, 1997, 94(4): 1441-1446.
[24]Plumpe J, Malek NP, Bock CT, et al. NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration[J]. Am J Physiol Gastroint Liver Physiol, 2000, 278(1): G173-183.
[25]Ozaki M, Haga S, Zhang HQ, et al. Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1[J]. Cell Death Differ, 2003, 10(5): 508-515.
[26]Haga S, Ogawa W, Inoue H, et al. Compensatory recovery of liver mass by Akt-mediated hepatocellular hypertrophy in liver-specific STAT3-deficient mice[J]. J Hepatol, 2005, 43(5): 799-807.
[27]Jackson LN, Larson SD, Silva SR, et al. PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy[J]. Am J Physiol Gastroint Liver Physiol, 2008, 294(6): G1401-1410.
[28]Yang X, Zhu L, Zhao W, et al. Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration[J]. Gene, 2016, 594(1): 66-73.
[29]Xu C, Zhi J, Zhao W, et al. Comparative analysis of the role of JNK signaling pathway in regulating cell proliferation and apoptosis of rat liver regeneration and rat acute hepatic failure[J]. Genetika, 2012, 48(8): 909-917.
[30]Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment[J]. Trends in Cell Biol, 2005, 15(12): 666-673.
[31]Le Moal E, Pialoux V, Juban G, et al. Redox control of skeletal muscle regeneration[J]. Antioxid Redox Signal, 2017, 27(5): 276-310.
[32]Lee S, Shin HS, Shireman PK, et al. Glutathione-peroxidase-1 null muscle progenitor cells are globally defective[J]. Free Radic Biol & Med, 2006, 41(7): 1174-1184.
[33]Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metab, 2009, 9(5): 407-416.
[34]Liang Y, Li J, Lin Q, et al. Research progress on signaling pathway-associated oxidative stress in endothelial cells[J]. Oxid Med Cell Longev, 2017 (2017):1-8.
[35]Fu X, Zhu M, Zhang S, et al. Obesity impairs skeletal muscle regeneration through inhibition of AMPK[J]. Diabetes, 2016, 65(1): 188-200.
[36]Zaccagnini G, Martelli F, Magenta A, et al. p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia[J]. J Biol Chem, 2007, 282(43): 31453-31459.
[37]Al-Sawaf O, Fragoulis A, Rosen C, et al. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury[J]. J Pathol, 2014, 234(4): 538-547.
[38]Togliatto G, Trombetta A, Dentelli P, et al. Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression[J]. J Am Heart Assoc, 2013, 2(6): e000376.
[39]Ataie A, Shadifar M, Ataee R. Polyphenolic antioxidants and neuronal regeneration[J]. Basic Clin Neurosci, 2016, 7(2): 81-90.
[40]Yao Y, Miao W, Liu Z, et al. Dimethyl fumarate and monomethyl fumarate promote post-ischemic recovery in mice[J]. Transl Stroke Res, 2016, 7(6): 535-547.
[41]Szepanowski F, Donaldson DM, Hartung HP, et al. Dimethyl fumarate accelerates peripheral nerve regeneration via activation of the anti-inflammatory and cytoprotective Nrf2/HO-1 signaling pathway[J]. Acta Neuropathol, 2017, 133(3): 489-491.
[42]Rapozzi V, Comelli M, Mavelli I, et al. Melatonin and oxidative damage in mice liver induced by the prooxidant antitumor drug, adriamycin[J]. In Vivo, 1999, 13(1): 45-50.
[43]Kaya Y, Savas K, Sarikcioglu L, et al. Melatonin leads to axonal regeneration, reduction in oxidative stress, and improved functional recovery following sciatic nerve injury[J]. Curr Neurovasc Res, 2015, 12(1): 53-62.
[44]Saijilafu, Hur EM, Liu CM, et al. PI3K-GSK3 signalling regulates mammalian axon regeneration by inducing the expression of Smad1[J]. Nat Commun, 2013, 4:2690.
[45]Raivich G, Bohatschek M, Da Costa C, et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration[J]. Neuron, 2004, 43(1): 57-67.
[46]Hammarlund M, Nix P, Hauth L, et al. Axon regeneration requires a conserved MAP kinase pathway[J]. Science, 2009, 323(5915): 802-806.
[47]Wang Q,Wu Q,Wang SL, et al. Changes of peroxiredoxin Ⅲ,catalases and superoxide dismutases expression in the heart of rats with hepatic ischemia-reperfusion injury[J]. Acta Anatomica Sinica, 2015, 46 (6): 832-836. (in Chinese)
王切.吴琼.王素玲 等.大鼠肝缺血再灌注损伤模型心内过氧化物酶Ⅲ、过氧化氢酶及超氧化物歧化酶的表达变化[J]. 解剖学报,2015,46 (6): 832-836.
[48]Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science, 2011, 331(6020): 1078-1080.
[49]Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death[J]. Science, 1996, 274(5288): 782-784.
[50]Karra R, Knecht AK, Kikuchi K, et al. Myocardial NF-kappaB activation is essential for zebrafish heart regeneration[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13255-13260.[51]Han P, Zhou XH, Chang N, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism[J]. Cell Res, 2014, 24(9): 1091-1107.
[52]Parente V, Balasso S, Pompilio G, et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart[J]. PLoS One, 2013, 8(1): e53748.
[53]Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice[J]. Nature, 2017, 541(7636): 222-227.
[54]Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals[J]. Nat Revi Genet, 2010, 11(10): 710-722.
[55]Gauron C, Rampon C, Bouzaffour M, et al. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed[J]. Sci Rep, 2013, 3:2084.
[56]Courtial L, Picco V, Grover R, et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells[J]. Sci Rep, 2017, 7:45713.
[57]Alibardi L. Morphological and cellular aspects of tail and limb regeneration in lizards. A model system with implications for tissue regeneration in mammals[J]. Adv Anat Embryol Cell Biol, 2010, 207: iii, v-x,1-109.
[58]Zhang Q, Wang Y, Man L, et al. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration[J]. Sci Rep, 2016, 6:20752.
[59]Love NR, Chen Y, Ishibashi S, et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration[J]. Nat Cell Biol, 2013, 15(2): 222-228.
[60]Hagemann JH, Thomasova D, Mulay SR, et al. Nrf2 signalling promotes ex vivo tubular epithelial cell survival and regeneration via murine double minute (MDM)-2[J]. Nephrol, dia Transplant, 2013, 28(8): 2028-2037.
[61]Zhaleh F, Amiri F, Mohammadzadeh-Ⅴardin M, et al. Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced acute kidney injury rats[J]. Iran J Basic Med Sci, 2016, 19(3): 323-329.
[62]Kulkarni OP, Hartter I, Mulay SR, et al. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration[J]. JASN, 2014, 25(5): 978-989.
[63]Olausson M, Patil PB, Kuna VK, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study[J]. Lancet, 2012, 380(9838): 230-237.
|
[1] | 赵卫明 李晓 余国营 王改平 常翠芳 . 丝氨酸肽酶抑制因子Kazal型1对肝癌细胞增殖的影响及其机制 [J]. 解剖学报, 2023, 54(6): 695-702. |
[2] | 张小丽 张书强 徐绘 . 视网膜Müller细胞重编程研究进展[J]. 解剖学报, 2023, 54(4): 484-489. |
[3] | 薛奇杰 常翠芳 王子慧 臧夏炎 林凯琳 张春博 韩璐 叶丙雨 徐存拴 . 大鼠肝再生的肝细胞周期启动及终止中骨髓瘤基因mRNA与其他非编码RNA的表达变化与作用[J]. 解剖学报, 2023, 54(4): 414-419. |
[4] | 林凯琳 杨献光 王子慧 臧夏炎 薛奇杰 韩璐 张春博 赵志虎 徐存拴. 大鼠肝再生的肝细胞凋亡中Kruppel样因子4 mRNA、微小RNA-881-3p、环状RNA_20298和环状RNA_14826的表达变化与作用[J]. 解剖学报, 2023, 54(4): 420-424. |
[5] | 李薇 王丽 汪志华 刘庆春 韩荣胜 . 长链非编码RNA alpha-2-巨球蛋白反义RNA 1靶向微小RNA-106b-5p调控氧化型低密度脂蛋白诱导的人脑微血管内皮细胞损伤[J]. 解剖学报, 2023, 54(3): 319-327. |
[6] | 谢秋敏 孙艳婷 许皓 刘蕙文 易勤 谭彬 田杰 朱静. 低氧低糖及血清剥夺联合处理抑制Nrf2信号通路诱发大鼠骨髓间充质干细胞氧化应激和凋亡[J]. 解剖学报, 2023, 54(3): 305-312. |
[7] | 王子慧 郭建林 臧夏炎 薛奇杰 林凯琳 张春博 韩璐 林俊堂 徐存拴 . 大鼠肝再生的肝细胞干性变化中性别决定区转录因子2 mRNA和其他非编码RNA的表达变化与作用[J]. 解剖学报, 2023, 54(2): 202-207. |
[8] | 郭东铭 张静文 黄新磊 徐杨 熊天庆 曹文宇 梁景岩 . 瞬时感受器电位香草素受体亚家族Ⅳ型抑制剂HC067047对脂多糖诱导的小鼠焦虑样行为的影响[J]. 解剖学报, 2023, 54(2): 149-155. |
[9] | 张春博 王改平 王子慧 臧夏炎 薛奇杰 林凯琳 韩璐 王棋文 徐存拴. 大鼠肝再生的肝脏炎症反应中骨髓瘤基因mRNA、微小RNA-540-3p、环状RNA_04996的表达变化与作用[J]. 解剖学报, 2023, 54(1): 70-74. |
[10] | 胡晓静 张明敏 吕广明. 多疣壁虎断尾后脊髓再生过程中mRNA和微小RNA差异表达谱的分析[J]. 解剖学报, 2023, 54(1): 6-12. |
[11] | 边维 李梦一 周鹏 李军伟 张庭 吴安婷 戚双双 崔怀瑞 孙臣友. 激活mTORC2/Akt信号通路对6-羟基多巴胺模型小鼠多巴胺能神经元和行为学的影响[J]. 解剖学报, 2023, 54(1): 13-22. |
[12] | 张思琦 康晨曦 张佩艳 雒海霞 李飞 史娟 李云庆. 脑血管发育的分子机制[J]. 解剖学报, 2022, 53(5): 680-686. |
[13] | 王澍 尹璐 刘宏斌 徐加志 赵吉波 潘云志 孙玉荣. 咪喹莫特下调STAT3/核因子κB信号通路抑制脑胶质细胞瘤U87细胞的增殖[J]. 解剖学报, 2022, 53(3): 323-329. |
[14] | 郭建林 王雪晴 徐存拴. MiR-429生物学功能的研究进展[J]. 解剖学报, 2022, 53(2): 266-272. |
[15] | 闫婷 赵继凯 王恩华. MEX3A通过PI3K/Akt信号通路促进结直肠癌细胞的增殖和迁移[J]. 解剖学报, 2022, 53(2): 196-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||