[1] Chen S, Feng H, Sherchan P, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage[J]. Prog Neurobiol,2014,115:64-91.
[2] Schneider UC, Davids AM, Brandenburg S, et al. Microglia inflict delayed brain injury after subarachnoid hemorrhage[J]. Acta Neuropathol,2015,130(2):215-231.
[3] Zheng VZ, Wong GKC. Neuroinflammation responses after subarachnoid hemorrhage: a review[J]. J Clin Neurosci, 2017,42:7-11.
[4] Naraoka M, Matsuda N, Shimamura N, et al. The role of arterioles and the microcirculation in t he development of vasospasm after aneurysmal SAH [J]. Biomed Res Int, 2014, 2014:253746.
[5] Xu HL, Pelligrino DA, Paisansathan C, et al. Protective role of fingolimod (FTY720) in rats subjected to subarachnoid hemorrhage[J]. J Neuroinflammation,2015,12(1):16.
[6] Schiefecker AJ, Dietmann A, Beer R,et al. Neuroinflammation is associated with brain extracellular tau-protein release after spontaneous subarachnoid hemorrhage[J]. Curr Drug Targets, 2017,18(12): 1408-1416.
[7] Changyaleket B, Chong ZZ, Dull RO, et al. Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats[J]. J Neuroinflammation, 2017,14(1):137.
[8] Yang X, Chen C, Hu Q, et al. γ-Secretase inhibitor (GSI1) attenuates morphological cerebral vasospasm in 24h after experimental subarachnoid hemorrhage in rats[J]. Neurosci Lett, 2010,469(3):385-390.
[9] Lucke-Wold BP, Logsdon AF, Manoranjan B, et al. Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review[J]. Int J Mol Sci, 2016,17(12):497.
[10] van Dijk BJ, Vergouwen MD, Kelfkens MM, et al. Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications[J]. Biochim Biophysi Acta,2016,1862(3):492-505.
[11] Schafer DP, Lehrman EK, Stevens B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS[J]. Glia,2013,61(1):24-36.
[12] Liu Y, Zou X, Chai Y, et al. Macrophage polarization in inflammatory diseases[J]. Int J Biol Sci, 2014,10(5):520-529.
[13] Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014,26(2):192-197.
[14] Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012,122(3):787-795.
[15] David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury[J]. Nat Rev Neurosci,2011,12(7):388-399.
[16] Kang K, Reilly SM, Karabacak Ⅴ, et al. Adipocyte-derived Th2 cytokines and myeloid PPAR delta regulate macrophage polarization and insulin sensitivity[J]. Cell Metab,2008,7(6):485-495.
[17] Mills CD. Anatomy of a discovery: M1 and M2 macrophages[J]. Front Immunol, 2015,6:212.
[18] Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke,2012,43(11):3063-3070.
[19] Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage[J]. J Neuroinflammation,2013,10:83.
[20] Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity[J]. J Clin Invest,2001,107(1):13-19.
[21] Quintana FJ. Old dog, new tricks: IL-6 cluster signaling promotes pathogenic TH17 cell differentiation[J]. Nat Immunol,2016,18(1):8-10.
[22] Greenhalgh AD, Brough D, Robinson EM, et al. Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology[J]. Dis Model Mech,2012,5(6):823-833.
[23] Wu Y, Pang J, Peng J, et al. An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage[J]. Neurosci Lett, 2016,627:92-99.
[24] Li H, Wu W, Sun Q, et al. Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage[J]. Brain Res,2014,1543:315-323.
[25] Sun Q, Wu W, Hu Y C, et al. Early release of high-mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro[J]. J Neuroinflammation,2014,11:106.
[26] Ye Z, Zhuang Z, Wu L, et al. Expression and cell distribution of leukotriene B4 receptor 1 in the rat brain cortex after experimental subarachnoid hemorrhage[J]. Brain Res, 2016,1652:127-134.
[27] Ayer R, Jadhav Ⅴ, Sugawara T, et al. The neuroprotective effects of cyclooxygenase-2 inhibition in a mouse model of aneurysmal subarachnoid hemorrhage[J]. Acta Neurochir Suppl,2011,111:145-149.
[28] Aoki T, Frosen J, Fukuda M, et al. Prostaglandin E2-EP2-NF-kappaB signaling in macrophages as a potential therapeutic target for intracranial aneurysms[J]. Sci Signal,2017,10(465):1-17.
[29] Zhang ZY, Sun BL, Liu JK, et al. Activation of mGluR5 attenuates microglial activation and neuronal apoptosis in early brain injury after experimental subarachnoid hemorrhage in rats[J]. Neurochem Res,2015,40(6):1121-1132.
[30] Zhang X, Zhang X, Zhang Q, et al. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats[J]. Brain Res,2015,1624:113-124.
[31] Schallner N, Pandit R, Leblanc RR, et al. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1[J]. J Clin Invest,2015,125(7):2609-2625.
[32] Kooijman E, Nijboer CH, van Velthoven CT, et al. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat[J]. PLoS One,2014,9(6):e90584.
[33] Zhang T, Su J, Guo B, et al. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats[J]. Int Immunopharmacol, 2015,28(1):79-87.
[34] Xie Z, Huang L, Enkhjargal B, et al. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats[J]. Brain Behav Immun, 2017,69:190-202.
[35] Fang R, Zheng X, Zhang M. Ethyl pyruvate alleviates early brain injury following subarachnoid hemorrhage in rats[J]. Acta Neurochir (Wien),2016,158(6):1069-1076.
[36] Zhang ZY, Sun BL, Yang MF, et al. Carnosine attenuates early brain injury through its antioxidative and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model[J]. Cell Mol Neurobiol,2015,35(2):147-157.
[37] Kotlega D, Golab-Janowska M, Masztalewicz M, et al. Potential role of statins in the intracerebral hemorrhage and subarachnoid hemorrhage[J]. Neurol Neurochir Pol,2015,49(5):322-328.
[38] Chen T, Wang W, Li J, et al. PARP inhibition attenuates early brain injury through NF-κB /MMP-9 pathway in a rat model of subarachnoid hemorrhage[J]. Brain Res, 2016, 1644:32-38.
[39] You W, Wang Z, Li H, et al. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats[J]. J Neurol Sci,2016,367:224-231.
[40] Hao G, Dong Y, Huo R, et al. Rutin inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, possibly through suppressing the RAGE-NF-κB inflammatory signaling pathway[J]. Neurochem Res, 2016, 41(6):1496-1504.
|