[1] Slebioda Z, Szponar E, Kowalska A.Recurrent aphthous stomatitis: genetic aspects of etiology[J]. Postepy Dermatol Alergol, 2013,30(2): 96-102.
[2] Liu NN,Guan S, Wang HY, et al. The antimicrobial peptide Nal-P-13 exerts a reparative effect by promoting cell proliferation, migration, and cell cycle progression[J]. Biomed Res Int, 2018,2018:7349351.
[3] Vaillant L, Samimi M. Aphthous ulcers and oral ulcerations[J]. Presse Med,2016,45(2):215-226.
[4] Liu T, Yang Z, Zhang X, et al. 16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora[J]. 3 Biotech, 2017,7(6):370-379.
[5] Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD[J]. FEBS Lett, 2014,588(22):4223-4233.
[6] Abrahamsson TR, Jakobsson HE,Andersson AF,et al. Low gut microbiota diversity in early infancy precedes asthma at school age[J]. ClinExp Allergy, 2014,44(6):842-850.
[7] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012,490(7418):55-60.
[8] Jie Z,Xia H,Zhong SL,et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nat Commun, 2017,8(1):845.
[9] Maeda Y, Takeda K . Role of gut microbiota in rheumatoid arthritis[J]. J Clin Med, 2017,6(6):60-66.
[10] Scher JU, Ubeda C, Artacho A. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis,resemblingdysbiosis in inflammatory bowel disease[J]. Arthritis Rheumatol, 2015,67(1):128-139.
[11] Geng H, Shu S, Dong JJ, et al. Association study of gut flora in Wilson’s disease through high-throughput sequencing[J]. Medicine, 2018,97(31): 1-7.
[12] Sunil T, Jacques I, Emily W, et al . The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists[J]. Cancer Res ,2017,77(8):1783-1812.
[13] Dinan TG, Stanton C,Cryan JF. Psychobiotics: a novel class of psychotropic[J]. Biol Psychiatry, 2013,74(10):720-726.
[14] Sara S, Sara CT, Chiara V, et al. Effect of a multistrain probiotic(Lactoflorene? Plus) on inflammatory parameters and microbiota composition in subjects with stress-related symptoms[J]. Neurobiol Stress, 2019,10:100138.
[15] Yu ZQ, Wang WF, Dai YC, et al. Interleukin-22 receptor 1 is expressed in multinucleated giant cells: a study on intestinal tuberculosis and Crohn’s disease[J]. World J Gastroenterol, 2019,25(20):2473-2488.
[16] Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology[J]. Annu Rev Immunol, 2015,33:747-785.
[17] Wang W, Chen L, Zhou R. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate producing bacteria in inflammatory bowel disease[J]. J ClinMicrobiol, 2014,52(2):398-406.
[18] Faubion WA Jr, Fletcher JG,O’Byrne S. Emerging biomARKers in inflammatory bowel disease(EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn’s disease activity:role of cross-sectional imaging[J]. Am J Gastroenterol,2013,108(5):1891-1900.
[19]Monteleone I, Franchi L, Biancone L,et al. Enhanced expression of the Fas pathway inhibitor, Flip, in the mucosa of patients with Crohn’s disease[J]. Eur Rev Med PharmacolSci, 2004,8:192.
[20] Zhang J, Chen SL, Li LB. Correlation between intestinal flora and serum inflammatory factors in patients with Crohn’s disease[J]. Eur Rev Med Pharmacol Sci , 2017,21(21):4913-4917.
[21] Marchini L, Campos MS, Silva AM, et al. Bacterial diversity in aphthous ulcers[J]. Oral Microbiol Immunol, 2007, 22(4):225-231.
[22] Brij B, Yadav AP, Singh SB ,et al. Diversity and functional analysis of salivary microflora of Indian Antarctic expeditionaries[J]. J Oral Microbiol, 2019,11(1):1581513.
[23] Kim YJ, Choi YS,Baek KJ,et al. Mucosal and salivary microbiota associated with recurrent aphthous stomatitis[J]. BMC Microbiol, 2016,16(Suppl 1):57.
[24] Chakradhar S. A curious connection: teasing apart the link between gut microbes and lung disease[J]. Nat Med, 2017, 23(4):402-404.
[25] Shen LJ. Oral Histopathology[M]. Wuhan: Huazhong Science and Technology University, 2013:224-242.
[26] Org E, Parks BW, Joo JW, et al. Genetic and environmental control of host-gut microbiota interactions[J]. Genome Res, 2015,25(10):1558-1569.
[27] Fang ZZ,Jiang R, Zhang LR,et al. In situ fabrication of radiopaque microcapsules for oral delivery and real-time gastrointestinal tracking of Bifidobacterium[J]. Int J Nanomedicine, 2018,13: 4093-4105.
[28] Huda MN, Lewis Z, Kalanetra KM, et al. Stool microbiota and vaccine responses of infants[J]. Pediatrics, 2014,134(2):e362-372.
[29] Holscher HD,Czerkies LA,Cekola P,et al. Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: a randomized, double-blind, controlled trial[J]. JPEN J Parenter Enteral Nutr,2012,36(Suppl 1):106S-117S.
[30] Chichlowski M, De Lartigue G, German JB,et al. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function[J]. J Pediatr Gastroenterol Nutr, 2012,55(3): 321-327.
[31] Taft DH,Liu JX,Maldonado-Gomez MX, et al. Bifidobacterial dominance of the Gut in early life and acquisition of antimicrobial resistance[J]. mSphere,2018,3(5). pii: e00441-18. doi: 10.1128/mSphere.00441-18.
[32] Michalek RD, Gerriets VA,Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011,186(6):3299-3303.
[33] Zeng H, Chi H. Metabolic control of regulatory T cell development and function[J]. Trends Immunol, 2015,36(1):3-12.
[34] Galgani M, De Rosa V, La Cava A,et al. Role of metabolism in the immunobiology of regulatory T cells[J]. J Immunol, 2016,197(7):2567-2575.
[35] Wang F,Yin Q,Chen L,et al. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade [J]. PNAS,2018,115(1):157-161.
[36] Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009,9(5):313-323.
|