[1] Zimmermann A. Regulation of liver regeneration[J]. Nephrol Dial Transplant,2004, 19 (Suppl 4): iv6-10.
[2] Michalopoulos GK, DeFrances M. Liver regeneration[J]. Adv Biochem Eng Biotechnol,2005, 93: 101-134.
[3] Adamek B, ZalewskaZiob M, Strzelczyk JK, et al. Hepatocyte growth factor and epidermal growth factor activity during later stages of rat liver regeneration upon interferon alpha-2b influence[J]. Clin Exp Hepatol,2017, 3(1): 9-15.
[4] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature,2013, 495(7441): 333-338.
[5] Fanale D, Taverna S, Russo A, et al. Circular RNA in exosomes[J]. Adv Exp Med Biol,2018, 1087: 109-117.
[6] Xu Z, Li P, Fan L, et al. The potential role of circRNA in tumor immunity regulation and immunotherapy[J]. Front Immunol,2018, 9: 9.
[7] Li L, Guo J, Chen Y, et al. Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration[J]. BMC Genomics,2017, 18(1): 80.
[8] Guo X, Jin W, Chang C, et al. Large-scale quantitative genomics analyzes the circRNA expression profile and identifies the key circRNA in regulating cell proliferation during the proliferation phase of rat LR[J]. Artif Cells Nanomed Biotechnol,2019, 47(1): 2957-2966.
[9] Higgins GM, Anderson AR. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal[J]. Arch Pathol,1931, 12: 17.
[10] Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data[J]. Genome Res,2012, 22(10): 2008-2017.
[11] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature,2013, 495(7441): 384-388.
[12] John B, Enright AJ, Aravin A, et al. Human microRNA targets[J]. PLoS Biol,2004, 2(11): e363.
[13] Shi Y, Yang F, Wei S, et al. Identification of key genes affecting results of hyperthermia in osteosarcoma based on integrative ChIP-Seq/TargetScan analysis[J]. Med Sci Monit,2017, 23: 2042-2048.
[14] Inoue K. MicroRNA function in animal development[J]. Tanpakushitsu Kakusan Koso,2007, 52(3): 197-204.
[15] Huang DW, Sherman BT, Tan Q, et al. DAVID Bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Res,2007, 35(Web Server issue): W169-175.
[16] Michalopoulos GK. Advances in liver regeneration[J]. Expert Rev Gastroenterol Hepatol,2014, 8(8): 897-907.
[17] Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell,2014, 159(1): 134-147.
[18] Zang XY, Geng XF, Zhang ChY, et al. Role of MicroRNAs in liver regeneration[J]. Acta Anatomica Sinica, 2017, 48(2): 230-235. (in Chinese)
臧夏炎, 耿小芳, 张春艳, 等. microRNAs在肝再生中的作用研究进展[J]. 解剖学报,2017, 48(2): 230-235.
[19] Choudhury R, Bonacci T, Wang X, et al. The E3 ubiquitin ligase SCF(Cyclin F) transmits AKT signaling to the cell-cycle machinery[J]. Cell Rep,2017, 20(13): 3212-3222.
[20] Du Q, Hu B, Feng Y, et al. CircOMA1-mediated mir-145-5p suppresses tumor growth of nonfunctioning pituitary adenomas by targeting TPT1[J]. J Clin Endocrinol Metab,2019, 104(6): 2419-2434.
[21] Sun M, Zhao W, Chen Z, et al. Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p[J]. J Cell Physiol, 2019, 234(4): 4812-4824.
[22] Browne AJ, Gobel A, Thiele S, et al. p38 MAPK regulates the Wnt inhibitor Dickkopf-1 in osteotropic prostate cancer cells[J]. Cell Death Dis,2016, 7: e2119.
[23] Sun GL, Li Z, Wang WZ, et al. MiR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway[J]. J Gastroenterol,2018, 53(6): 725-739.
[24] Jiao Y, Ye DZ, Li Z, et al. Protein tyrosine phosphatase of liver regeneration-1 is required for normal timing of cell cycle progression during liver regeneration[J]. Am J Physiol Gastrointest Liver Physiol,2015, 308(2): G85-91.
[25] Wang Y, Yang Z, Wang L, et al. MiR-532-3p promotes hepatocellular carcinoma progression by targeting PTPRT[J]. Biomed Pharmacother,2019, 109: 991-999.
[26] Liu H, Chen F, Zhang L, et al. A novel all-trans retinoic acid derivative 4-amino2trifluoromethyl-phenyl retinate inhibits the proliferation of human hepatocellular carcinoma HepG2 cells by inducing G0/G1 cell cycle arrest and apoptosis via upregulation of p53 and ASPP1 and downregulation of iASPP[J]. Oncol Rep,2016, 36(1): 333-341.
|