[1] Calamita G, Gena P, Ferri D, et al. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol[J]. Biol Cell, 2012, 104(6):342-351.
[2] Wang C, Lv ZL, Kang Y J, et al. Aquaporin-9 downregulation prevents steatosis in oleic acid-induced non-alcoholic fatty liver disease cell models[J]. Int J Mol Med, 2013, 32(5):1159-1165.
[3] Hirako S, Wakayama Y, Kim H, et al. The relationship between aquaglyceroporin expression and development of fatty liver in diet-induced obesity and ob/ob mice[J]. Obes Res Clin Pract, 2016, 10(6):710-718.
[4] Mendez-Gimenez L, Rodriguez A, Balaguer I, et al. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis[J]. Mol Cell Endocrinol, 2014, 397(1-2):78-92.
[5] Rodriguez A, Moreno NR, Balaguer I, et al. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice[J]. Sci Rep, 2015, 5(1):1-13.
[6] Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing[J]. Transl Res, 2016, 16(8):15-21.
[7] Kuriyama H, Shimomura I, Kishida K, et al. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9[J]. Diabetes, 2002, 51(10):2915-2921.
[8] Rodriguez A, Catalan V, Gomez-Ambrosi J, et al. Insulin-and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade[J]. J Clin Endocrinol Metab, 2011, 96(4):E586-597.
[9] Wang C, Kang YJ, Jiang Z, et al. [Construction of short hairpin RNA targeting aquaglyceroporin 9 and screening its effect on molecular mechanisms of nonalcoholic fatty liver disease using a cell model system][J]. Zhonghua Gan Zang Bing Za Zhi, 2013, 21(3):222-227.
[10] Lv Y, Huang Q, Dai W, et al. AQP9 promotes astrocytoma cell invasion and motility via the AKT pathway[J]. Oncol Lett, 2018, 16(5):6059-6064.
[11] Jansen R, Embden JD, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol Microbiol, 2002, 43(6):1565-1575.
[12] Bibikova M, Beumer K, Trautman JK, et al. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620):764.
[13] Hui L, Chang L, Yu-hang Z, et al. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts[J]. J Integrative Agricult, 2018, 17(2):406-414.
[14] Sasaki H, Yoshida K, Hozumi A, et al. CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis[J]. Dev Growth Differ, 2014, 56(7):499-510.
[15] Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826.
[16] Byrne CD, Targher G. NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl):S47-64.
[17] Niu ShW, Wu JZ, Li XB, et al. Molecular mechanism of lilarutin in regulating hyperlipid-induced nonalcoholic fatty liver disease[J]. Acta Anatomica Sinica, 2014, 45(06):800-808. (in Chinese)
牛世伟, 武俊紫, 李晓波, 等. 利拉鲁肽调控高脂诱导的非酒精性脂肪肝病的分子机制[J]. 解剖学报, 2014, 45(6):800-808.
[18] Calamita G, Perret J, Delporte C. Aquaglyceroporins: drug targets for metabolic diseases[J]? Front Physiol, 2018, 9(1):1-15.
|