Acta Anatomica Sinica ›› 2018, Vol. 49 ›› Issue (4): 543-548.doi: 10.16098/j.issn.0529-1356.2018.04.022
• Review • Previous Articles Next Articles
DING Yan-ping 1* JIN Yi-ran1 BAI Yu-jie1 PAN Zi-yan1 SHAO Bao-ping2
Received:
2017-06-01
Revised:
2017-08-11
Online:
2018-08-06
Published:
2018-08-06
Contact:
DING Yan-ping
E-mail:dingyp05@163.com
DING Yan-ping JIN Yi-ran BAI Yu-jie PAN Zi-yan SHAO Bao-ping. Regulation of neuroimmune system on learning and memory[J]. Acta Anatomica Sinica, 2018, 49(4): 543-548.
[1] Lécuyer MA,Kebir H,Prat A. Glial influences on BBB functions and molecular players in immune cell trafficking [J]. Biochim Biophys Acta,2016,1862(3):472-482.
[2] Zhu ChG. The relationship between neuro-immuno-endocrine network and epileptogenesis [J]. Acra Anatomica Sinica,2002,33 (3):321-324. (in Chinese)
朱长庚. 神经-免疫-内分泌网络与癫痫发病机理的关系[J]. 解剖学报,2002, 33(3):321-324.
[3] Yirmiya R,Goshen Ⅰ. Immune modulation of learning,memory,neural plasticity and neurogenesis [J]. Brain Behav Immun,2011,25(2):181-213.
[4] Elmore MR, Najafi AR, Koike MA,et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability,unmasking a microglia progenitor cell in the adult brain [J]. Neuron,2014,82(2):380-397.
[5] Swinnen N,Smolders S,Avila A,et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo [J]. Glia,2013,61(2):150-163.
[6] Sierra A,Beccari S,Diaz-Aparicio Ⅰ,et al. Surveillance,phagocytosis,and inflammation:how never-resting microglia influence adult hippocampal neurogenesis [J]. Neural Plast,2014,2014:610343.
[7] Arnò B,Grassivaro F,Rossi C,et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex [J]. Nat Commun,2014,5:5611.
[8] Ueno M,Fujita Y,Tanaka T,et al. Layer Ⅴ cortical neurons require microglial support for survival during postnatal development [J]. Nat Neurosci,2013,16(5):543-551.
[9] Shigemoto-Mogami Y,Hoshikawa K,Goldman JE,et al. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone [J]. J Neurosci,2014, 34(6):2231-2243.
[10] Paolicelli RC,Bolasco G,Pagani F,et al. Synaptic pruning by microglia is necessary for normal brain development [J]. Science,2011,333(6048):1456-1458.
[11] Schafer DP,Lehrman EK,Kautzman AG,et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner [J]. Neuron,2012,74(4):691-705.
[12] Bialas AR,Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement [J]. Nat Neurosci,2013,16(12):1773-1782.
[13] Parkhurst CN,Yang G,Ninan Ⅰ,et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor [J]. Cell,2013,155(7):1596-1609.
[14] Elmore MR,Najafi AR,Koike MA,et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability,unmasking a microglia progenitor cell in the adult brain [J]. Neuron,2014,82(2):380-397.
[15] Gautier EL,Shay T,Miller J,et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages [J]. Nat Immunol,2012,13(11):1118-1128.
[16] Hoshiko M,Arnoux Ⅰ,Avignone E,et al. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex [J]. Neurosci,2012,32(43):15106-15111.
[17] Rogers JT,Morganti JM,Bachstetter AD,et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity [J]. J Neurosci,2011,31(45):16241-16250.
[18] Wake H,Moorhouse AJ,Jinno S,et al. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals [J]. J Neurosci,2009,29(13):3974-3980.
[19] Zhu ChG,Li ZhL. Cytokine and immune-neuro-endocrine regulation network [J]. Acta Anatomica Sinica,1996,27(4):339-344. (in Chinese)
朱长庚,李正莉. 细胞因子与免疫神经内分泌调节网络 [J]. 解剖学报,1996,27 (4):339-344.
[20] Schneider H,Pitossi F,Balschun D,et al. A neuromodulatory role of interleukin-1b in the hippocampus [J]. Proc Natl Acad Sci,1998,95(13):7778-7783.
[21] Goshen Ⅰ,Kreisel T,Ounallah-Saad H,et al. A dual role for interleukin-1 in hippocampal-dependent memory processes [J]. Psychoneuroendocrinology,2007,32(8-10):1106-1115.
[22] Viviani B,Bartesaghi S,Gardoni F,et al. Interleukin1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases [J]. J Neurosci,2003,23(25):8692-8700.
[23] Zunszain PA,Anacker C,Cattaneo A,et al. Interleukin-1beta:a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis [J]. Neuropsychopharmacology,2012,37(4):939-949.
[24] Zhang K,Xu H,Cao L,et al. Interleukin-1beta inhibits the differentiation of hippocampal neural precursor cells into serotonergic neurons [J]. Brain Res,2013,1490:193-201.
[25] Song C,Phillips AG,Leonard B. Interleukin 1 beta enhances conditioned fear memory in rats:possible involvement of glucocorticoids [J]. Eur J Neurosci,2003,18(7):1739-1743.
[26] Le HL,Luo GQ. Research progress of early inflammatory factors TNF-a,IL-1 and IL-6 after trauma [J]. Modern Diagnosis & Treatment,2014,25(4),763-765. (in Chinese)
乐海浪,罗国强. 创伤后早期炎症因子 TNF-a、IL-1、IL-6 的研究进展 [J]. 现代诊断与治疗,2014,25(4),763-765.
[27] Braida D,Sacerdote P,Panerai AE,et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice [J]. Behav Brain Res,2004,153(2):423-429.
[28] Williamson LL, Bilbo SD. Chemokines and the hippocampus:a new perspective on hippocampal plasticity and vulnerability [J]. Brain Behav Immun,2013,30:186-194.
[29] Balschun D,Wetzel W,Del Rey A,et al. Interleukin-6:a cytokine to forget [J]. FASEB,2004,18(14):1788-1790.
[30] Jankowsky JL,Derrick BE,Patterson PH. Cytokine responses to LTP induction in the rat hippocampus:a comparison of in vitro and in vivo techniques [J]. Learn Mem,2000,7(6):400-412.
[31] He Y,Hsuchou H,Wu X,et al. Interleukin-15 receptor is essential to facilitate GABA transmission and hippocampal-dependent memory [J]. J Neurosci,2010,30(13):4725-4734.
[32] Takei Y,Laskey R. Interpreting crosstalk between TNF-alpha and NGF:potential implications for disease [J]. Trends Mol Med,2008,14(9):381-388.
[33] Belarbi K,Jopson T,Tweedie D,et al. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation [J]. Neuroinflammation,2012,25(9):23.
[34] Butler MP,O’Connor JJ,Moynagh PN. Dissection of tumor-necrosis factor-αinhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP [J]. Neuroscience,2004,124(2):319-326.
[35] Paredes D,Acosta S,Gemma C,et al. Role of TNFα induced inflammation in delay eye blink conditioning in young and aged rats [J]. Aging and Disease,2010,1(3):191-198.
[36] Baune BT,Wiede F,Braun A,et al. Cognitive dysfunction in mice deficient for TNF- and its receptors [J]. Am J Med Genet B Neuropsychiatr Genet,2008,147B(7):1056-1064.
[37] Fontaine Ⅴ,Mohand-Said S,Hanoteau N,et al. Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia:opposite roles of TNF receptor 1 and TNF receptor 2 [J]. J Neurosci,2002,22(7):RC216.
[38] Iosif RE,Ekdahl CT,Ahlenius H,et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis [J]. J Neurosci,2006,26(38):9703-9712.
[39] Naude PJ,Dobos N,van der Meer D,et al. Analysis of cognition,motor performance and anxiety in young and aged tumor necrosis factor alpha receptor 1 and 2 deficient mice [J]. Behav Brain Res,2014,258:43-51.
[40] Stellwagen D,Malenka RC. Synaptic scaling mediated by glial TNF-a [J]. Nature,2006,440(7087):1054-1059.
[41] Scherbel U,Raghupathi R,Nakamura M,et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury [J]. Proc Natl Acad Sci,1999,96(15):8721-8726.
[42] Crews FT,Walter TJ,Coleman LG Jr,et al. Toll-like receptor signaling and stages of addiction [J]. Psychopharmacology,2017,234(9-10):1483-1498.
[43] Barak B,Feldman N,Okun E. Toll-like receptors as developmental tools that regulate neurogenesis during development:an update [J]. Front Neurosci,2014,8:272.
[44] Okun E,Griffioen KJ,Son TG,et al. TLR2 activation inhibits embryonic neural progenitor cell proliferation [J]. J Neurochem,2010,114(2),462-474.
[45] Rolls A,Shechter R,London A,et al. Toll-like receptors modulate adult hippocampal neurogenesis [J]. Nat Cell Biol,2007,9(9):1081-1088.
[46] Okun E,Griffioen K,Barak B,et al. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis [J]. Proc Natl Acad Sci,2010,107(35):15625-15630.
[47] Lin CW,Liu HY,Chen CY,et al. Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains [J]. Innate Immun,2014,20(2):161-172.
[48] Ziv Y,Ron N,Butovsky O,et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood [J]. Nat Neurosci,2006,9(2):268-275.
[49] Huang S,Tao X,Yuan S,et al. Discovery of an active RAG transposon illuminates the origins of Ⅴ(D)J recombination [J]. Cell,2016,166 (1):102-114.
[50] Chun JJ,Schatz DG,Oettinger MA,et al. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system [J]. Cell,1991,64(1):189-200.
[51] McGowan PO,Hope TA,Meck WH,et al. Impaired social recognition memory in recombination activating gene 1-deficient mice [J]. Brain Res,2011,1383:187-195.
[52] Derecki NC,Cardani AN,Yang CH,et al. Regulation of learning and memory by meningeal immunity:a key role for IL-4 [J]. Exp Med,2010,207(5):1067-1080.
[53] Baruch K,Schwartz M. CNS-specific T cells shape brain function via the choroid plexus [J]. Brain Behav Immun,2013,34:11-16.
[54] Nautiyal KM,Dailey CA,Jahn JL,et al. Serotonin of mast cell origin contributes to hippocampal function [J]. Eur J Neurosci,2012,36 (3):2347-2359.
|
[1] | WANG Wen-juan DING Yu-tong SU Hao REN Jie SUN Yan-rong WANG Han-fei LU Jia-li ZHANG Lin-qian BAI Yu QIN Li-hua. Changes of Nogo-A expression in hippocampus and striatum of rats under low estrogen condition [J]. Acta Anatomica Sinica, 2023, 54(6): 620-627. |
[2] | LI Xia ZHU Shi-jie TANG Zhong-sheng LUO Ya-fei FAN Rui-juan XIE Gao-yu KOU Yun-fang LU Ying. Mechanism of electroacupuncture regulating the ligand pathway of tyrosine kinase receptor in improving vascular dementia [J]. Acta Anatomica Sinica, 2023, 54(6): 689-694. |
[3] | CHENG Yong-bo QU Jia-hua SHAN Wen LIU Qian-qian QIN Jian-bin TIAN Mei-ling ZHANG Xin-hua SHI Wei. Effects of astrocytes on the proliferation of neural stem cells in the hippocampal microenvironment of old and young adults [J]. Acta Anatomica Sinica, 2023, 54(4): 375-382. |
[4] | LI Rui-ting LEI Ling-feng YANG Na XIANG Zhi-yu LI Ze-kai LU Li . Impaired cholesterol metabolism affecting subventricular zone neurogenesis in ob/ob mice [J]. Acta Anatomica Sinica, 2023, 54(2): 165-174. |
[5] |
WANG Ya-juan YANG Bin ZENG Xue-qing LIANG Yue LIU Zhi-wen CAO Wen-yu ZHONG Xiao-lin .
Dexmedetomidine improving complete Freund’s adjuvant-induced anxiety-like and depression-like behaviour by promoting the expression of brain-derived neurotrophic factor-tyrosin kinase receptor B in mice hippocampus
[J]. Acta Anatomica Sinica, 2023, 54(2): 181-187.
|
[6] | BIAN Wei LI Meng-yi ZHOU Peng LI Jun-wei ZHANG Ting WU An-ting QI Shuang-shuang CUI Huai-rui SUN Chen-you. Effects of activating mTORC2/Akt signaling pathway on dopaminergic neurons and behaviors in 6-hydroxydopamin model mice [J]. Acta Anatomica Sinica, 2023, 54(1): 13-22. |
[7] | SHI Meng-meng ZHANG Yuan LI Jing LUO Xiang-lin ZHANG Yuan XU Yang ZHONG Xiao-lin CAO Wen-yu. Effect of chronic restraint stress on the phenotypic transition of hippocampal astrocytes and depression-like behavior in mice [J]. Acta Anatomica Sinica, 2023, 54(1): 42-49. |
[8] | LIU Kun CHEN Jing-fei WANG Shou-yu LI Tao GAO Xing YU Bin MEI Feng XIAO Lan. Dicer requiring for astrocyte quiescence in developing brains [J]. Acta Anatomica Sinica, 2022, 53(4): 407-411. |
[9] | YU Zhe-cheng ZHANG Xiao-yan DU Juan-juan ZHOU Peng. Monocarboxylate transporter 1 enhancing the expression of inducible nitric oxide synthase within M1 phenotype microglia under low-glucose condition [J]. Acta Anatomica Sinica, 2022, 53(3): 288-294. |
[10] | DENG Ying-cheng NIU lei XIAO Yu-hua XU Xuan SUN Qiu-ming WAN Wei. Effect of hippocampal brain derived neurotrophic factor precursor in mice cognitive dysfuction induced by social isolation [J]. Acta Anatomica Sinica, 2022, 53(2): 155-159. |
[11] | ZHENG Xiao-min ZHANG Ting-yuan BU Chao-zhi HUANG Lu ZHOU Tao YE Yang ZHANG Yi-xuan REN Yong-wei JIANG Shi-wen. Correlation between estrogen and progesterone fluctuation and expression of extrasynaptic δ-subunits containing γ-aminobutyric acid type A receptors in cortex and hippocampus during estrous cycle in mice [J]. Acta Anatomica Sinica, 2021, 52(6): 839-844. |
[12] | LI Wei ZHOU Xin XIE Zhi-yan ZHANG Tian-le YANG Hui CAO Wen-yu LIU Zhi-wen ZENG Jia-yu. Voluntary wheel running prevents the formaldehyde induced negativeemotion through up-regulation of hippocampal neurogenesis in mice#br# [J]. Acta Anatomica Sinica, 2021, 52(5): 686-691. |
[13] | LIN Bao-yong XU Jin-chao YING Han-tao JIANG Xin LIU Huan-cai WANG Qing WANG Qiao-zhen CHEN Yan-chun. Relationship between DEAD-box helicase 5, transcription factor 12 and amyotrophic lateral sclerosis#br# [J]. Acta Anatomica Sinica, 2021, 52(5): 698-705. |
[14] | DU Juan-juan YE Zhen ZHOU Tao REN Yan-hua LIAO Min. Small ubiquitin-like modifier proteins specific protease 3 in microglia participating in the early progression of photothrombosic ischemic stroke mice model [J]. Acta Anatomica Sinica, 2021, 52(4): 548-553. |
[15] | XU Hong-bei LUO Yong. Triggering receptor expressed on myeloid cell-2 modulating the polarization of mouse M2 microglia with oxygen-glucose deprivation/re-oxygenation model [J]. Acta Anatomica Sinica, 2021, 52(3): 329-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||