Acta Anatomica Sinica ›› 2018, Vol. 49 ›› Issue (4): 549-555.doi: 10.16098/j.issn.0529-1356.2018.04.023
• Review • Previous Articles Next Articles
WANG Zhao-lun1 ZHANG Yan2 WANG Jun 2*
Received:
2017-05-11
Revised:
2017-06-27
Online:
2018-08-06
Published:
2018-08-06
Contact:
WANG Jun
E-mail:wangjun74008@bjmu.edu.cn
WANG Zhao-lun ZHANG Yan WANG Jun. Role of Nogo-A and Nogo-A receptors in Alzheimer’s disease[J]. Acta Anatomica Sinica, 2018, 49(4): 549-555.
[1] Oertle T, van der Haar ME, Bandtlow CE, et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions[J]. J Neurosci, 2003, 23(13): 5393-5406.
[2] Schwab ME. Functions of Nogo proteins and their receptors in the nervous system[J]. Nat Rev Neurosci, 2010, 11(12): 799-811.
[3] Bella J, Hindle KL, McEwan PA, et al. The leucine-rich repeat structure[J]. Cell Mol Life Sci, 2008, 65(15): 2307-2333.
[4] Yamashita T, Higuchi H, Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho[J]. J Cell Biol, 2002, 157(4): 565-570.
[5] Montani L, Gerrits B, Gehrig P, et al. Neuronal Nogo-A modulates growth cone motility via Rho-GTP/LIMK1/cofilin in the unlesioned adult nervous system[J]. J Biol Chem, 2009, 284(16): 10793-10807.
[6] Atwal JK, Pinkston-Gosse J, Syken J, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration[J]. Science, 2008, 322(5903): 967-970.
[7] Haruka M, Shota E, Eiji K, et al. Differential but competitive binding of Nogo protein and class i major histocompatibility complex (MHCI) to the PIR-B ectodomain provides an inhibition of cells[J]. J Biol Chem, 2011, 286(29): 25739-25747.
[8] Yuki F, Shota E, Toshiyuki T, et al. Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity[J]. EMBO J, 2011, 30(7): 1389-1401.
[9] Dickson HM, Jonathan Z, Huanqing Z, et al. POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66[J]. J Neurosci, 2010, 30(40): 13319-13325.
[10] Fujita Y, Takashima R, Endo S, et al. The p75 receptor mediates axon growth inhibition through an association with PIR-B[J]. Cell Death Dis, 2011, 2(9): e198.
[11] Kempf A, Tews B, Arzt ME, et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity[J]. PLoS Biol, 2014, 12(1): e1001763.
[12] Joset A, Dodd DA, Halegoua S, et al. Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde signaling[J]. J Cell Biol, 2010, 188(2): 271-285.
[13] Xiong NX, Zhao HY, Zhang FCh, et al. The role of calcium in Nogo-A inhibiting axonal outgrowth[J]. Acta Anatomica Sinica, 2005, 36(6): 582-585.(in Chinese)
熊南翔, 赵洪洋, 张方成, 等. 钙离子参与Nogo-A抑制轴突生长的作用[J]. 解剖学报, 2005, 36(6): 582-585.
[14] Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury[J]. Exp Neurol, 2008, 209(2): 321-332.
[15] Cheng XP, Liu HL, Song ChJ, et al. Immunohistochemical localization of Nogo-A in the neurons of the brain of adult rat[J]. Acta Anatomica Sinica, 2005, 36(5): 465-470. (in Chinese)
程希平, 刘惠玲, 宋朝君, et al. Nogo-A在成年大鼠脑内神经元的分布[J]. 解剖学报, 2005, 36(5): 465-470.
[16] Zheng ChX, Shen JX, Jin WL, et al. Changes in Nogo-A distribution in hippocampal neurons during growth in vitro[J]. Acta Anatomica Sinica, 2004, 35(4): 350-353. (in Chinese)
郑春霞, 申军现, 金卫林, et al. 体外培养海马神经元生长过程中Nogo-A分布的变化[J]. 解剖学报, 2004, 35(4): 350-353.
[17] McGee AW, Yang Y, Fischer QS, et al. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor[J]. Science, 2005, 309(5744): 2222-2226.
[18] Akbik FV, Bhagat SM, Patel PR, et al. Anatomical plasticity of adult brain is titrated by Nogo Receptor 1[J]. Neuron, 2013, 77(5): 859-866.
[19] Jitsuki S, Nakajima W, Takemoto K, et al. Nogo receptor signaling restricts adult neural plasticity by limiting synaptic AMPA receptor delivery[J]. Cereb Cortex, 2016, 26(1): 427-439.
[20] Delekate A, Zagrebelsky M, Kramer S, et al. NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale[J]. Proc Natl Acad Sci USA, 2011, 108(6): 2569-2574.
[21] Lee H, Raiker SJ, Venkatesh K, et al. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength[J]. J Neurosci, 2008, 28(11): 2753-2765.
[22] Karlen A, Karlsson TE, Mattsson A, et al. Nogo receptor 1 regulates formation of lasting memories[J]. Proc Natl Acad Sci USA, 2009, 106(48): 20476-20481.
[23] Raiker SJ, Lee H, Baldwin KT, et al. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity[J]. J Neurosci, 2010, 30(37): 12432-12445.
[24] Tews B, Schonig K, Arzt ME, et al. Synthetic microRNA-mediated downregulation of Nogo-A in transgenic rats reveals its role as regulator of synaptic plasticity and cognitive function[J]. Proc Natl Acad Sci USA, 2013, 110(16): 6583-6588.
[25] Zemmar A, Weinmann O, Kellner Y, et al. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo[J]. J Neurosci, 2014, 34(26): 8685-8698.
[26] He W, Lu Y, Qahwash Ⅰ, et al. Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation[J]. Nat Med, 2004, 10(9): 959-965.
[27] He W, Hu X, Shi Q, et al. Mapping of interaction domains mediating binding between BACE1 and RTN/Nogo proteins[J]. J Mol Biol, 2006, 363(3): 625634.
[28] Kume H, Murayama KS, Araki W. The two-hydrophobic domain tertiary structure of reticulon proteins is critical for modulation of beta-secretase BACE1[J]. J Neurosci Res, 2009, 87(13): 2963-2972.
[29] Shi Q, Prior M, He W, et al. Reduced amyloid deposition in mice overexpressing RTN3 is adversely affected by preformed dystrophic neurites[J]. J Neurosci, 2009, 29(29): 9163-9173.
[30] Hu X, Shi Q, Zhou X, et al. Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities[J]. EMBO J, 2007, 26(11): 2755-2767.
[31] Masliah E, Xie F, Dayan S, et al. Genetic deletion of Nogo/Rtn4 ameliorates behavioral and neuropathological outcomes in amyloid precursor protein transgenic mice[J]. Neuroscience, 2010, 169(1): 488-494.
[32] Prior M, Shi Q, Hu X, et al. RTN/Nogo in forming Alzheimer’s neuritic plaques[J]. Neurosci Biobehav Rev, 2010, 34(8): 1201-1206.
[33] Bros-Facer Ⅴ, Krull D, Taylor A, et al. Treatment with an antibody directed against Nogo-A delays disease progression in the SOD1G93A mouse model of Amyotrophic lateral sclerosis[J]. Hum Mol Genet, 2014, 23(16): 4187-4200.
[34] Cheng X, Wu J, Geng M, et al. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer’s disease[J]. Neurobiol Aging, 2014, 35(6): 1217-1232.
[35] Park JH, Gimbel DA, GrandPre T, et al. Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition[J]. J Neurosci, 2006, 26(5): 1386-1395.
[36] Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain[J]. Nat Med, 2003, 9(7): 907-913.
[37] Park JH, Widi GA, Gimbel DA, et al. Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice[J]. J Neurosci, 2006, 26(51): 13279-13286.
[38] Zhou X, Hu X, He W, et al. Interaction between amyloid precursor protein and Nogo receptors regulates amyloid deposition[J]. FASEB J, 2011, 25(9): 3146-3156.
[39] Kim T, Vidal GS, Djurisic M, et al. Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model[J]. Science, 2013, 341(6152): 1399-1404.
[40] Zhou Y, Su Y, Li B, et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho[J]. Science, 2003, 302(5648): 1215-1217.
[41] Pedrini S, Carter TL, Prendergast G, et al. Modulation of Statin-Activated Shedding of Alzheimer APP Ectodomain by ROCK[J]. PLoS Med, 2005, 2(1): e18.
[42] Shi J, Wu X, Surma M, et al. Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment[J]. Cell Death Dis, 2013, 4(2): e483.
[43] Herskowitz JH, Feng Y, Mattheyses AL, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model[J]. J Neurosci, 2013, 33(49): 19086-19098.
[44] Henderson BW, Gentry EG, Rush T, et al. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK1 depletion reduces amyloid-β levels in brain[J]. J Neurochem, 2016, 138(4):525-531.
[45] Hu YB, Zou Y, Huang Y, et al. ROCK1 is associated with Alzheimer’s disease-specific plaques, as well as enhances autophagosome formation but not autophagic Aβ clearance[J]. Front Cell Neurosci, 2016, 10:253.
[46] Gentry EG, Henderson BW, Arrant AE, et al. Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration[J]. J Neurosci, 2016, 36(4): 1316-1323.
[47] Park JC, Baik SH, Han SH, et al. Annexin A1 restores A beta(1-42)-induced bloodbrain barrier disruption through the inhibition of RhoA-ROCK signaling pathway[J]. Aging Cell, 2017, 16(1): 149-161.
|
[1] | WANG Wen-juan DING Yu-tong SU Hao REN Jie SUN Yan-rong WANG Han-fei LU Jia-li ZHANG Lin-qian BAI Yu QIN Li-hua. Changes of Nogo-A expression in hippocampus and striatum of rats under low estrogen condition [J]. Acta Anatomica Sinica, 2023, 54(6): 620-627. |
[2] |
WANG Hongfang GENG Dan-dan ZHANG Run-jiao LIU Qing LI Yi-bo WANG Lei .
Role and research progress of circular RNA in Alzheimer’s disease #br#
#br#
[J]. Acta Anatomica Sinica, 2023, 54(4): 490-494.
|
[3] | HU Yao-wen SUN Yan-rong SUN Hao-zhe WANG Wen-juan ZHANG Su-xin QIN Li-hua. Research progress on the relationship between Nogo protein and myocardial fibrosis [J]. Acta Anatomica Sinica, 2022, 53(5): 674-679. |
[4] | HU Qi-guo LIU Huai-cun CHEN Ling ZHAO Yan WANG Jun. Nogo-A in the rat dorsal root ganglion promotes the polymerization of tubulin and inflammatory heat hyperalgesia [J]. Acta Anatomica Sinica, 2019, 50(5): 549-553. |
[5] | SU Xiang ZHANG Zhen YANG Lin-jing QIU Yi-hui SONG Cheng-long CHEN Juan-yan SONG Shui-jiang. Granulocyte colony stimulating factor improving the learning and memory function and its anti-inflammatory mechanism of Alzheimer’s disease model rats [J]. Acta Anatomica Sinica, 2019, 50(1): 29-34. |
[6] | CUI Zhan-jun LIU Fang ZHAO Kai-bing LI Bing-mei LIU Zhong-hua. Brain barrier structure of APPSWE Tg2576 mice [J]. Acta Anatomica Sinica, 2018, 49(5): 571-578. |
[7] | NI Jie FANG Yu HU Yan DONG Yu-lin*. Effect of Tenuigenin on low density lipoprotein receptor-related protein 1 level changes of Alzheimer’s disease rat in hippocampus [J]. AAS, 2016, 47(6): 744-749. |
[8] | YAN Ming-chao ZHAO Pei-wen CAO Jing-jing WANG Xiao-qing WANG Qian SUN Yi-zheng CHENG Yan-hong DENG Jin-bo*. Role of Reelin signaling pathway in the pathogenesis of Alzheimer’s disease model mice [J]. AAS, 2016, 47(6): 721-730. |
[9] | CAO Jing-jing FAN Wen-juan SHI Zhen-yu YAN Ming-chao LIU Hong-liang WANG Lai DENG Jin-bo*. Effect of amyloid beta-peptide25-35 neurotoxicity on cytoskeletons of PC12 cells [J]. AAS, 2016, 47(4): 469-475. |
[10] | CHEN Jing-bo WANG Yu-juan GUO Sheng-nan NIU Si-yun* DUAN Fei*. Effect and mechanism of Heshowuyin on alleviating the hippocampal neurons injury induced by β-amyloid protein [J]. AAS, 2015, 46(2): 175-181. |
[11] | JI Kai-yuan MA Wen-li* ZHENG Wen-ling. Differentially expressed genes related to age and the Alzheimer’s disease [J]. AAS, 2015, 46(2): 164-169. |
[12] | WEN Ya-nan NIU Yan-li HU Lei FU Xing LI Jin-ju WU Ping* DENG Jin-bo*. Tissue affinity of bone marrow mesenchymal stem cell and the therapeutic transplantation for neurodegenerative diseases [J]. AAS, 2014, 45(6): 742-748. |
[13] | LIU Kai NIU Yan-li LI Jin-ju WU Ping* DENG Jin-bo*. Alteration of microglia and vasculature in the developing Tg2576 transgenic mouse [J]. AAS, 2014, 45(6): 735-741. |
[14] | WANG Yuan-wei ZHENG Guan-yi* CHEN Xiao-chun ZHANG Jing HUANG Tian-wen YE Hong PAN Xiao-dong. Ativation of gliacytes and p38 mitogen-activated protein kinase and possible mechanism of neuronal apoptosis induced by Aβ25-35 injection into hippocampus in rats [J]. AAS, 2014, 45(5): 616-621. |
[15] | FENG Min ZHANG Ying-jun LU Juan XIONG Yin-yi WU Qiao-feng YU Mei-ling LU Sheng-feng YU Shu-guang*. Abnormal expression of AMPA receptor in hippocampus of senescence accelerated mouse prone 8 correlated to synaptic plasticity [J]. AAS, 2014, 45(1): 15-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||