[1]van Laarhoven JJEM, Hietbrink F, Ferree S, et al. Associated thoracic injury in patients with a clavicle fracture: a retrospective analysis of 1461 polytrauma patients[J]. Eur J Trauma and Emerg Surg, 2019,45(1): 59-63.
[2]Hu J, Zheng F, Wang SH, et al. Missed rib fractures on initial chest CT in trauma patients: time patterns, clinical and forensic significance[J]. Eur Radiol, 2021,31(4): 2332-2339.
[3]Khung S, Masset P, Duhamel A, et al. Automated 3D Rendering of Ribs in 110 Polytrauma Patients: Strengths and Limitations[J]. Acad Radiol, 2017,24(2): 146-152.
[4]Ke J, Lv Y, Du YL, et al. Automatic segmentation of facial nerve, labyrinthine and ossicles in temporal CT by deep learning[J]. Acta Anatomica Sinica, 2020,51(5): 653-658. (in Chinese)
柯嘉, 吕弈, 杜雅丽, 等.颞骨CT内面神经、迷路、听骨结构深度学习的自动化分割方法[J]. 解剖学报, 2020,51(5): 653-658.
[5]Weikert T, Noordtzij LA, Bremerich J, et al. Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography[J]. Korean J Radiol, 2020,21(7): 891-899.
[6]Ren SQ, He KM, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017,39(6): 1137-1149.
[7]Chen M, Du P, Zhao JY. SCRFD: Spatial coherence based Rib fracture detection[C]. Okinawa: 5th International Conference on Biomedical and Bioinformatics Engineering, 2018.
[8]Jin L, Yang JC, Kuang KM, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet[J]. Ebiomedicine, 2020,62: 103106.
[9]Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Trans Pattern Anal Mach Intell, 2020,42(2): 318-327.
[10]Lin TY, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[11]He KM, Gkioxari G, Dollar P, et al. Mask R-CNN[C]. Venice: IEEE International Conference on Computer Vision, 2017.
[12]Solovyev R, Wang WM, Gabruseva T. Weighted boxes fusion: Ensembling boxes from different object detection models[J]. Image Vision Comput, 2021:104117.
[13]Salehi SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C]. Quebec City: International Workshop on Machine Learning in Medical Imaging, 2017.
[14]Jolivet E, Sandoz B, Laporte S, et al. Fast 3D reconstruction of the rib cage from biplanar radiographs[J]. Med Biol Eng Comput, 2010,48(8): 821-828.
[15]Dworzak J, Lamecker H, von Berg J, et al. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model[J]. Int J Comput Ass Radiol Surg, 2010, 5(2): 111-124.
[16]Zhang L, Li X, Hu QM. Automatic rib segmentation in chest CT volume data[C]. Macao: International Conference on Biomedical Engineering and Biotechnology, 2012.
[17]Kim J, Kim SJ, Kim YJ, et al. Quantitative measurement method for possible rib fractures in chest radiographs[J]. Health Inform Res, 2013,19(3): 196-204.
[18]Meng XH, Wu DJ, Wang Z, et al. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance[J]. Skeletal Radiol,2021,50 (9): 1821-1828.
[19]Zhou QQ, Tang W, Wang JS, et al. Automatic detection and classification of rib fractures based on patients’ CT images and clinical information via convolutional neural network[J]. Eur Radiol, 2021,31(6): 3815-3825.
|