[1]Chen ST, Siddarth P, Ercoli LM, et al. Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups [J]. PLoS One, 2014, 9(6): e98630.
[2]Ujiie M, Dickstein DL, Carlow DA, et al. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model [J]. Microcirculation, 2003, 10(6): 463-470.
[3]Devi L, Ohno M. Effects of BACE1 haploinsufficiency on APP processing and Abeta concentrations in male and female 5XFAD Alzheimer mice at different disease stages [J]. Neuroscience, 2015, 307(2015): 128-137.
[4]Nguyen TV, Galvan V, Huang W, et al. Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664 [J]. J Neurochem, 2008, 104(4): 1065-1080.
[5]Grilli M, Ferrari TG, Uberti D, et al. Alzheimer’s disease linking neurodegeneration with neurodevelopment [J]. Funct Neurol, 2003, 18(3): 145-148.
[6]Bufill E, Roura-Poch P, Sala-Matavera I, et al. Reelin signaling pathway genotypes and Alzheimer disease in a Spanish population [J]. Alzheimer Dis Assoc Disord, 2015, 29(2): 169-172.
[7]Chau DM, Crump CJ, Villa JC, et al. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of gamma-secretase [J]. J Biol Chem, 2012, 287(21): 17288-17296.
[8]Berezovska O, Xia MQ, Hyman BT. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease [J]. J Neuropathol Exp Neurol, 1998, 57(8): 738-745.
[9]Jankowsky JL, Fadale DJ, Anderson J, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase [J]. Hum Mol Genet, 2004,13(2): 159-170.
[10]Marzese DM, Scolyer RA, Roque M, et al. DNA methylation and gene deletion analysis of brain metastases in melanoma patients identifies mutually exclusive molecular alterations [J]. Neuro Oncol, 2014,16(11): 1499-1509.
[11]Porquet D, Andres-Benito P, Grinan-Ferre C, et al. Amyloid and tau pathology of familial Alzheimer’s disease APP/PS1 mouse model in a senescence phenotype background (SAMP8) [J]. Age (Dordr), 2015, 37(1): 9747.
[12]Sadleir KR, Kandalepas PC, Buggia-Prevot V, et al. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Abeta generation in Alzheimer’s disease [J]. Acta Neuropathol, 2016, 132(2): 235-256.
[13]Verheijden S, Beckers L, Casazza A, et al. Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal beta-oxidation deficiency [J]. Glia, 2015, 63(9): 1606-1620.
[14]Oyanagi K, Tashiro T, Negishi T. Cell-type-specific and differentiation-status-dependent variations in cytotoxicity of tributyltin in cultured rat cerebral neurons and astrocytes [J]. J Toxicol Sci, 2015, 40 (4): 459-468.
[15]Pappas AC, Koide M, Wellman GC. Astrocyte Ca2+ Signaling Drives Inversion of Neurovascular Coupling after Subarachnoid Hemorrhage [J]. J Neurosci, 2015, 35(39): 13375-13384.
[16]Son SM, Cha MY, Choi H, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease [J]. Autophagy, 2016, 12(5): 784-800.
[17]Duveau V, Madhusudan A, Caleo M, et al. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy [J]. Hippocampus, 2011, 21(9): 935-944.
[18]Yan MCh, Niu YL, Wang XQ, et al. Reelin and the cerebellar development——the regulatory effect of Notch1 signaling pathways [J]. Acta Anatomica Sinica, 2015, 46(02): 182-189. (In Chinese)
鄢明超, 牛艳丽, 王小青, 等. Reelin与小脑发育——Notch1信号通路的调节作用[J]. 解剖学报, 2015, 46(02): 182-189.
[19]Yu D, Fan W, Wu P, et al. Characterization of hippocampal Cajal-Retzius cells during development in a mouse model of Alzheimer’s disease (Tg2576)[J]. Neural Regen Res, 2014, 9(4): 394-401.
[20]Hornig T, Haas C, Sturm L, et al. Correction: Increased blood-reelin-levels in first episode schizophrenia [J]. PLoS One, 2015, 10(11): e0142247.
[21]Teroganova N, Girshkin L, Suter CM, et al. DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: a systematic review [J]. BMC Genet, 2016, 17(1): 1-15.
[22]Aspe-Sanchez M, Moreno M, Rivera MI, et al. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits [J]. Front Neurosci, 2015, 9(510): 1-18.
[23]Chang BS, Duzcan F, Kim S, et al. The role of RELN in lissencephaly and neuropsychiatric disease [J]. Am J Med Genet B Neuropsychiatr Genet, 2007, 144B(1): 58-63.
[24]Farinelli P, Perera A, Arango-Gonzalez B, et al. DNA methylation and differential gene regulation in photoreceptor cell death [J]. Cell Death Dis, 2014, 5: e1558.
[25]Humphries CE, Kohli MA, Nathanson L, et al. Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease [J]. J Alzheimers Dis, 2015, 44(3): 977-987.
[26]Lashley T, Gami P, Valizadeh N, et al. Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer’s disease [J]. Neuropathol Appl Neurobiol, 2015, 41(4): 497-506.
[27]Bakulski KM, Dolinoy DC, Sartor MA, et al. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex [J]. J Alzheimers Dis, 2012, 29(3): 571-588.
[28]West RL, Lee JM, Maroun LE. Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient [J]. J Mol Neurosci, 1995, 6(2): 141-146.
|