[1] Naderi A, Bhattacharjee N, Folch A. Digital manufacturing for microfluidics [J]. Annu Rev Biomed Eng,2019,21(1):325-364.
[2] Swain JE, Lai D, Takayama S, et al. Thinking big by thinking small: application of microfluidic technology to improve ART [J]. Lab Chip,2013,13(7): 1213-1224.
[3] Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction [J]. Mol Hum Reprod,2017,23(4): 257-268.
[4] Yildiz K, Yuksel S. Use of microfluidic sperm extraction chips as an alternative method in patients with recurrent in vitro fertilisation failure [J]. J Assisted Reprod Genet,2019,36(7): 1423-1429.
[5] Samuel R, Feng HD, Jafek A, et al. Microfluidic-based sperm sorting & analysis for treatment of male infertility [J]. Transl Androl Urol ,2018,7(Suppl 3): S336-S347.
[6] Segerink LI, Sprenkels AJ, ter Braak PM, et al. On-chip determination of spermatozoa concentration using electrical impedance measurements [J]. Lab Chip,2010,10(8): 1018-1024.
[7] Schaff UY, Fredriksen LL, Epperson JG, et al. Novel centrifugal technology for measuring sperm concentration in the home [J]. Fertil Steril,2016,107(2):358-364.
[8] Kanakasabapathy MK, Sadasivam M, Singh A, et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis [J]. Sci Transl Med,2017,9 (382):eaai7863.
[9] Zhou ZH, Kang YJ, Xu ZG, et al. Development and prospects of microfluidic platforms for sperm inspection [J]. Analytical Methods,2019,11(36): 4547-4560.
[10] Kricka LJ, Faro I, Heyner S, et al. Micromachined analytical devices: microchips for semen testing[J]. J Pharm Biomed Anal, 1997, 15(9-10):1443-1447.
[11] Cho C, Jungha H, Willis WD, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice[J]. Biol Reprod, 2003, 69(1):211.
[12] Schuster TG, Cho B, Keller LM, et al. Isolation of motile spermatozoa from semen samples using microfluidics[J]. Reprod Biomed Online, 2003, 7(1):75-81.
[13] Nosrati R, Vollmer M, Eamer L, et al. Rapid selection of sperm with high DNA integrity [J]. Lab Chip,2014,14(6): 1142-1150.
[14] Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research [J]. Trends Biotechnol,2015,33(4): 221-229.
[15] Angione SL, Oulhen N, Brayboy LM, et al. Simple perfusion apparatus for manipulation, tracking, and study of oocytes and embryos [J]. Fertil Steril,2015,103(1): 281-290 e5.
[16] Hwang H, Lee DH, Choi W, et al. Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force[J]. Biomicrofluidics, 2009, 3(1):014103.
[17] Murayama Y, Constantinou CE, Omata S. Micro-mechanical sensing platform for the characterization of the elastic properties of the ovum via uniaxial measurement[J]. J Biomech, 2004, 37(1):67-72.
[18] Gebhardt KM, Feil DK, Dunning KR, et al. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer [J]. Fertil Steril,2011,96(1): 47-52.
[19] Yanez LZ, Camarillo DB. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies [J]. Mol Hum Reprod,2017,23(4): 235-247.
[20]Lei LJ,Wang Q,Yang L,et al. Application of assisted reproductive technology in patients with polycystic ovary syndrome [J].Journal of jiujiang University (Natural Sciences),2018,33(3): 80-86.(in Chinese)
雷兰杰, 王琪, 杨磊, 等. 辅助生殖技术在多囊卵巢综合征患者上的应用综述[J]. 九江学院学报(自然科学版), 2018, 33(3): 80-86.
[21] Walters E, Beebe D, Wheeler M. In vitro maturation of pig oocytes in polydimethylsiloxane and silicon microchannels[J]. Theriogenology, 2001, 55(1): 497.
[22] Hester P, Roseman H, Clark S, et al. Enhanced cleavage rates following in vitro maturation of pig oocytes within polydimethylsiloxane-borosilicate microchannels[J]. Theriogenology, 2002, 57(1): 723.
[23] Weng L, Lee GY, Liu J, et al. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy [J]. Lab Chip,2018,18(24):3892-3902.
[24] Kashaninejad N, Shiddiky MJA, Nguyen NT. Advances in microfluidics-based assisted reproductive technology: from sperm sorter to reproductive system-on-a-chip [J]. Advanced Biosystems,2018,2(3):1700197.
[25] Suh R. Microfluidic applications for andrology[J]. J Androl, 2005, 26(6):664-670.
[26] Han C, Zhang Q, Ma R, et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device [J]. Lab Chip,2010,10(21): 2848-2854.
[27] O’Mahony FC, O’Donovan C, Hynes J, et al. Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies[J]. Environ Sci Technol, 2005, 39(13):5010-5014.
[28] Urbanski JP, Johnson MT, Craig DD, et al. Development of a microfluidic platform to measure metabolic activity of preimplantation embryos[J]. Fertil Steril, 2007, 88(S1). doi:10.1016/j.fertnstert.2007.07.130
[29] Heo YS, Cabrera LM, Bormann CL, et al. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates [J]. Hum Reprod,2010,25(3): 613-622.
[30] Glasgow IK, Zeringue HC, Beebe DJ, et al. Individual Embryo Transport and Retention on a Chip[M]. Netherlands: Micro Total Analysis Systems '98, Springer, 1998: 199-202.
[31] Wheeler MB, Beebe DJ, Walters EM, et al. Microfluidic technology for in vitro embryo production[C]. 2nd Annual International Ieee-Embs Special Topic Conference on Microtechnologies in Medicine & Biology, Proceedings 2002:104-108.
[32] Raty S , Walters EM , Davis J , et al. Embryonic development in the mouse is enhanced via microchannel culture[J]. Lab Chip, 2004, 4(3):186-190.
[33] Wang W,Su N,Zhong ZhM, et al. Dynamic embryo culture in a microfluidic device[J]. Chinese Journal of Family Planning , 2014, 22(11):730-733. (in Chinese)
王维, 苏宁, 钟志敏, 等. 基于微流控芯片的动态胚胎培养[J]. 中国计划生育学杂志, 2014, 22(11):730-733.
[34] Kieslinger DC, Hao ZX, Vergouw CG, et al. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial [J]. Fertil Steril,2015,103(3): 680-6.e2.
[35] Yang L, Wei Q, Li W, et al. C-type natriuretic peptide improved vitrified-warmed mouse cumulus oocyte complexes developmental competence [J]. Cryobiology,2016,72(2): 161-164.
[36] Yang L, Lei L, Zhao Q, et al. Lycium barbarum polysaccharide improves the development of mouse oocytes vitrified at the germinal vesicle stage [J]. Cryobiology,2018,85(12): 7-11.
[37] Yang M,Lin HW,Zhang HQ,et al. Androgen, androgen receptor and polycystic ovary syndrome [J]. Acta Anatomica Sinica,2018,49(1):132-136. (in Chinese)
杨玫,林海伟,张宏权,等. 雄激素及其受体与多囊卵巢综合征[J].解剖学报,2018,49(1):132-136.
[38] Heo YS, Lee HJ, Hassell BA, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform [J]. Lab Chip,2011,11(20): 3530-3537.
[39] Lai D, Ding J, Smith GW, et al. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification [J]. Hum Reprod,2015,30(1): 37-45.
[40] Roy E, Galas JC, Veres T. Thermoplastic elastomers for microfluidics: Towards a high-throughput fabrication method of multilayered microfluidic devices[J]. Lab Chip, 2011, 11(18):3193-3196.
[41] Yang Y, Zhou XL, Dai JJ, et al. Linear loading cryoprotectants(CPAs)with microfluidic method reduces osmotic damage to porcine M II-stage oocytes [J]. Progress in Biochemistry and Biophysics, 2016,43(6): 616-623.(in Chinese)
杨云, 周新丽, 戴建军, 等. 微流控线性加载低温保护剂减少猪MⅡ期卵母细胞的渗透损伤 [J]. 生物化学与生物物理进展,2016,43(6): 616-623.
[42] Zhou XL, Guo YY, Yi XY, et al. Experimental study of microfluidic chip for cryopreservation of oocytes [J]. Progress in Biochemistry and Biophysics, 2018,45(7):763-770. (in Chinese)
周新丽, 郭莹莹, 衣星越, 等.微流控芯片用于卵母细胞冷冻保存的实验研究 [J]. 生物化学与生物物理进展,2018,45(7):763-770.
|