[1]Asgeirsson KS. Pregnancy-associated breast cancer[J]. Acta Obstet Gynecol Scand, 2011, 90(2): 158-166.
[2]Petrek J, Seltzer V. Breast cancer in pregnant and postpartum women[J]. J Obstet Gynaecol Can, 2003, 25(11): 944-950.
[3]Conley CA, Fowler VM. Localization of the human 64kD autoantigen D1 to myofibrils in a subset of extraocular muscle fibers[J]. Curr Eye Res, 1999, 19(4): 313-322.
[4]Zhang J, Fei F, Shao ZhM, et al. A pairing control analysis of pregnancy associated with breast cancer[J]. Shanghai Medical Journal, 2003, 26∶124-126.(in Chinese)
张杰,费菲,邵志敏,等. 妊娠哺乳期乳腺癌的配对资料分析[J]. 上海医学, 2003, 26(2): 124-126.
[5]Zhang LM,Zhan J,Zhang HQ, et al. Identification of the downstream signaling pathways of HOXA5 in breast cancer cells[J].Acta Anatomica Sinica,2015, 46(5):634-650.(in Chinese)
张立美,战军,张宏权, 等.转录因子HOXA5在乳腺癌细胞中的下游信号通路[J].解剖学报, 2015, 46(5): 634-650.
[6]Fiets WE, Bellot FE, Struikmans H, et al. Prognostic value of mitotic counts in axillary node negative breast cancer patients with predominantly well-differentiated tumours[J]. Eur J Surg Oncol, 2005, 31(2): 128-133.
[7]Harvell DM, Kim J, O’Brien J, et al. Genomic signatures of pregnancy-associated breast cancer epithelia and stroma and their regulation by estrogens and progesterone[J]. Horm Cancer, 2013, 4(3): 140-153.
[8]Huang DW, Sherman BT, Stephens R, et al. DAVID gene ID conversion tool[J]. Bioinformation, 2008, 2(10): 428-430.
[9]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57.
[10]Salwinski L, Miller CS, Smith AJ, et al. The database of interacting proteins: 2004 update[J]. Nucleic Acids Res, 2004, 32(Database issue): D449-D451.
[11]Mishra GR, Suresh M, Kumaran K, et al. Human protein reference database—2006 update[J]. Nucleic Acids Res, 2006, 34(Database issue): D411-D414.
[12]Zwart W, Flach KD, Rudraraju B, et al. SRC3 phosphorylation at Serine 543 is a positive independent prognostic factor in ER positive breast cancer[J]. Clin Cancer Res, 2016, 22(2):479-491.
[13]Green D, Dalmay T, Fraser WD. Role of miR-140 in embryonic bone development and cancer[J]. Clin Sci, 2015, 129(10): 863-873.
[14]Hayashi N, Manyam GC, Gonzalez-Angulo AM, et al. Reverse-phase protein array for prediction of patients at low risk of developing bone metastasis from breast cancer[J]. Oncologist, 2014, 19(9): 909-914.
[15]Simonova OA, Kuznetsova EB, Poddubskaya EV, et al. DNA methylation in the promoter regions of the laminin family genes in normal and breast carcinoma tissues[J]. Mol Biol, 2015, 49(4): 667-677.
[16]Dorman SN, Baranova K, Knoll JH, et al. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning[J]. Mol Oncol, 2015,10(1):85-100.
[17]Danilo C, Gutierrez-Pajares JL, Mainieri MA, et al. Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development[J]. Breast Cancer Res, 2013, 15(5): R87
[18]Conley CA, Fritz-Six KL, Almenar-Queralt A, et al. Leiomodins: larger members of the tropomodulin (Tmod) gene family[J]. Genomics, 2001, 73(2): 127-139.
[19]Finn SP, Smyth P, Cahill S, et al. Expression microarray analysis of papillary thyroid carcinoma and benign thyroid tissue: emphasis on the follicular variant and potential markers of malignancy[J]. Virchows Arch, 2007, 450(3): 249-260.
[20]Zafrakas M, Tarlatzis BC, Streichert T, et al. Genome-wide microarray gene expression, array-CGH analysis, and telomerase activity in advanced ovarian endometriosis: a high degree of differentiation rather than malignant potential[J]. Int J M, 2008, 21(3): 335-344. |