[1] Ehninger D. From genes to cognition in tuberous sclerosis: implications for mTOR inhibitor-based treatment approaches [J]. Neuropharmacology, 2013, 68:97-105.
[2] Laplante M, Sabatini DM. mTOR signaling in growth control and disease [J]. Cell, 2012, 149(2):274-293.
[3] Nixon RA. The role of autophagy in neurodegenerative disease [J]. Nat Med, 2013,19(8): 983-997.
[4] Kim SR, Kareva T, Yarygina O, et al. AAV transduction of dopamine neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth [J]. Mol Ther, 2012, 20(2): 275-286.
[5] Pernet Ⅴ, Schwab ME. Lost in the jungle: new hurdles for optic nerve axon regeneration [J]. Trends Neurosci, 2014, 37(7):381-387.
[6] Zhang J, Ji F, Liu Y, et al. Ezh2 regulates adult hippocampal neurogenesis and memory [J]. J Neurosci, 2014, 34(15): 5184-5199.
[7] Dai J, Bercury KK, Macklin WB. Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation [J]. Glia, 2014, 62(12): 2096-2109.
[8] Li C, Xiao L, Liu X, et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination [J]. Glia, 2013, 61(5): 732-749.
[9] Bercury KK, Dai J, Sachs HH, et al. Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination [J]. J Neurosci, 2014, 34(13): 4466-4480.
[10] Lebrun-Julien F, Bachmann L, Norrmen C, et al. Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination [J]. J Neurosci, 2014, 34(25): 8432-8448.
[11] Wahl SE, McLane LE, Bercury KK, et al. Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination [J]. J Neurosci, 2014, 34(13): 4453-4465.
[12] Sherman DL, Krols M, Wu LM, et al. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR [J]. J Neurosci, 2012, 32(5): 1817-1825.
[13] Iyer AM, van Scheppingen J, Milenkovic Ⅰ, et al. mTOR hyperactivation in down syndrome hippocampus appears early during development [J].J Neuropathol Exp Neurol, 2014, 73(7): 671-683.
[14] Ma YQ, Wu DK, Liu JK. mTOR and tau phosphorylated proteins in the hippocampal tissue of rats with type 2 diabetes and Alzheimer’s disease [J]. Mol Med Rep,2013,7(2): 623-627.
[15] Orr ME, Salinas A, Buffenstein R, et al. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer’s disease pathology [J]. Neurobiol Aging, 2014, 35(6): 1233-1242.
[16] Caccamo A, De Pinto Ⅴ, Messina A, et al. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature [J]. J Neurosci, 2014, 34(23):7988-7998.
[17] Majumder S, Caccamo A, Medina DX, et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling [J]. Aging Cell,2012, 11(2): 326-335.
[18] Pierce A, Podlutskaya N, Halloran JJ, et al. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer’s-like deficits in mice modeling the disease [J]. J Neurochem, 2013, 124(6): 880-893.
[19] Lin AL, Zheng W, Halloran JJ, et al. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease [J]. J Cereb Blood Flow Metab, 2013,33(9): 1412-1421.
[20] Cai Z, Yan LJ. Rapamycin, autophagy, and Alzheimer’s disease [J]. J Biochem Pharmacol Res, 2013, 1(2): 84-90.
[21] Tang Z, Bereczki E, Zhang H, et al. Mammalian target of rapamycin (mTOR) mediates tau protein dyshomeostasis: implication for Alzheimer disease [J]. J Biol Chem, 2013, 288(22): 15556-15570.
[22] Romani-Aumedes J, Canal M, Martin-Flores N, et al. Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson’s disease [J]. Cell Death Dis, 2014, 5: e1364.
[23] Subramaniam S, Napolitano F, Mealer RG, et al. Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia [J]. Nat Neurosci, 2012, 15(2): 191-193.
[24] Pryor WM, Biagioli M, Shahani N, et al. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease [J]. Sci Signal,2014, 7(349): ra103.
[25] Mealer RG, Subramaniam S, Snyder SH. Rhes deletion is neuroprotective in the 3-nitropropionic acid model of Huntington’s disease [J]. J Neurosci, 2013,33(9): 4206-4210.
[26] Baiamonte BA, Lee FA, Brewer ST, et al. Attenuation of Rhes activity significantly delays the appearance of behavioral symptoms in a mouse model of Huntington’s disease [J]. PLoS One, 2013, 8(1): e53606.
[27] Hyrskyluoto A, Reijonen S, Kivinen J, et al. GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway [J]. Exp Cell Res,2012, 318(1): 33-42.
[28] Mealer RG, Murray AJ, Shahani N, et al. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy [J]. J Biol Chem, 2014, 289(6): 3547-3554.
[29] Lee JH, Tecedor L, Chen YH, et al. Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes [J]. Neuron, 2015, 85(2): 303-315.
[30] Duman RS, Li N, Liu RJ, et al. Signaling pathways underlying the rapid antidepressant actions of ketamine [J]. Neuropharmacology, 2012, 62(1): 35-41.
[31] Yu JJ, Zhang Y, Wang Y, et al. Inhibition of calcineurin in the prefrontal cortex induced depressive-like behavior through mTOR signaling pathway [J]. Psychopharmacology 2013, 225(2): 361-372.
[32] Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents [J]. Trends Neurosci,2012, 35(1): 47-56.
[33] Niciu MJ, Henter ID, Luckenbaugh DA, et al. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds[J]. Annu Rev Pharmacol Toxicol, 2014, 54: 119-139.
[34] Workman ER, Niere F, Raab-Graham KF. mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling [J]. Neuropharmacology,2013, 73: 192-203.
[35] Kim CS, Chang PY, Johnston D. Enhancement of dorsal hippocampal activity by knockdown of HCN1 channels leads to anxiolytic-and antidepressant-like behaviors [J]. Neuron, 2012, 75(3): 503-516.
[36] Meffre J, Chaumont-Dubel S, Mannoury la Cour C, et al. 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia [J]. EMBO Mol Med, 2012, 4(10): 1043-1056.
[37] Zhou M, Li W, Huang S, et al. mTOR inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons [J]. Neuron, 2013, 77(4): 647-654.
[38] Ma T, Hoeffer CA, Capetillo-Zarate E, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease [J]. PLoS One,2010, 5(9):e12845.
[39] Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments [J]. J Biol Chem, 2010, 285(17): 13107-13120.
[40] Boland B, Kumar A, Lee S, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease [J]. J Neurosci,2008, 28(27): 6926-6937.
[41] Crews L, Spencer B, Desplats P, et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy [J]. PLoS One, 2010, 5(2): e9313.
[42] Tain LS, Mortiboys H, Tao RN, et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss[J]. Nat Neurosci, 2009,12(9): 1129-1135.
[43] Xie MQ, Chen ZhCh, Wang TT, et al. The current stayus of neurogenesis in neurotoxin-induced animal models for Parkinson’s diease [J]. Acta Anatomica Sinica, 2017, 48(5): 497-503. (in Chinese)
谢明琦,陈治池,王彤彤,等. 神经增生在神经性毒物诱导的帕金森动物模型中的研究进展[J]. 解剖学报,2017,48(5):497-503.
[44] Howell KR, Kutiyanawalla A, Pillai A. Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex[J]. PLoS One, 2011, 6(5): e20198.
|