[1] Young LM, Geldenhuys WJ, Domingo OC, et al. Synthesis and biological evaluation of pentacycloundecylamines and triquinylamines as voltage-gated calcium channel blockers[J]. Arch Pharm (Weinheim), 2016,349(4):252-267.
[2] Dore K, Stein IS, Brock JA,et al. Unconventional NMDA receptor signaling[J]. J Neurosci, 2017, 37 (45):10800-10807.
[3] Wang JH, Cui S. Neuronal signal encoding and storage as principles of brain function[J]. Prog Biochem Biophys, 2016,43(4):367-373.
[4] Milosevic A, Noctor SC, Martinez-Cerdeno Ⅴ,et al. Progenitors from the postnatal forebrain subventricular zone differentiate into cerebellar-like interneurons and cerebellar-specific astrocytes upon transplantation[J]. Mol Cell Neurosci, 2008,39(3): 324-334.
[5] Incontro S, Díaz-Alonso J, Iafrati J, et al. The CaMKⅡ/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms[J]. Nat Commun, 2018, 9(1):2069.
[6] Poon AD, McGill SH, Bhupanapadu Sunkesula SR, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ and Dimethyl Sulfoxide affect the sealing frequencies of transected hippocampal neurons[J]. J Neurosci Res, 2018, 96(7): 1208-1222.
[7] Goodell, DJ, Benke TA, Bayer KU. Developmental restoration of LTP deficits in heterozygous CaMKⅡ alpha KO mice[J]. J Neurophysiol, 2016, 116(5):2140-2151.
[8] Moriguchi S, Kita S, Fukaya M,et al. Reduced expression of Na+/Ca2+ exchangers is associated with cognitive deficits seen in Alzheimer’s disease model mice[J]. Neuropharmacology, 2018, 131: 291-303.
[9] Takemoto-Kimura S, Suzuki K, Horigane SI, et al. Calmodulin kinases: essential regulators in health and disease[J]. J Neurochem, 2017,141(6): 808-818.
[10] Gray CB, Heller Brown J. CaMKⅡdelta subtypes: localization and function[J]. Front Pharmacol, 2014,5:15.
[11] Srinivasan M, Edman CF, Schulman H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus[J]. J Cell Biol, 126(4): 839-852.
[12] Schworer CM, Rothblum LI, Thekkumkara TJ, et al. Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase Ⅱ. Differential expression in rat brain and aorta[J]. J Biol Chem, 1993, 268(19):14443-14449.
[13] Shioda N, Fukunaga K. Physiological and pathological roles of CaMKⅡ-PP1 signaling in the Brain[J]. Int J Mol Sci,2018,19(11):20.
[14] Sobhia ME, Grewal BK, Paul ML,et al. Protein kinase C inhibitors: a patent review (2010-present)[J]. Expert Opin Ther Pat, 2013, 23(11): 1451-1468.
[15] Shi J, Zhang XK, Yin L, et al. Herbal formula GAPT prevents beta amyloid deposition induced Ca2+/Calmodulin-dependent protein kinase Ⅱ and Ca2+/calmodulin-dependent protein phosphatase 2B imbalance in APPV717I mice[J]. BMC Complement Altern Med, 2016, 16:159.
[16] Ashpole NM, Song W, Brustovetsky T, et al. Calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability[J]. J Biol Chem, 2012, 287(11): 8495-8506.
[17] Pullara F, Asciutto EK, General IJ. Mechanisms of activation and subunit release in Ca2+/calmodulin-dependent protein kinase Ⅱ[J]. J Phys Chem B, 2017, 121(45):10344-10352.
[18] O’Brien MT, Oakhill JS, Ling NX,et al. Impact of genetic variation on CaMKK2 regulation by Ca2+ -calmodulin and multisite phosphorylation[J]. Sci Rep, 2017, 7: 43264.
[19] Lucic Ⅴ, Greif GJ, Kennedy MB. Detailed state model of CaMKⅡ activation and autophosphorylation[J]. Eur Biophys J, 2008, 38(1):83-98.
[20] Baek A, Park EJ, Kim SY,et al. High-frequency repetitive magnetic stimulation enhances the expression of brain-derived neurotrophic factor through activation of Ca2+ -calmodulin-dependent protein kinase Ⅱ-cAMP-response element-binding protein pathway[J]. Front Neurol, 2018, 9:285
[21] Sasi M, Vignoli B, Canossa M, et al. Neurobiology of local and intercellular BDNF signaling[J]. Pflugers Arch, 2017,469(56): 593-610.
[22] Kamata A, Takeuchi Y, Fukunaga K. Identification of the isoforms of Ca2+/calmodulin-dependent protein kinase Ⅱ and expression of brain-derived neurotrophic factor mRNAs in the substantia nigra[J]. J Neurochem, 2006, 96(1): 195-203.
[23] Dewenter M, von der Lieth A, Katus HA, et al. Calcium signaling and transcriptional regulation in cardiomyocytes[J]. Circ Res, 2017,121(8):1000-1020.
[24] Abbasi WA, Asif A, Andleeb S,et al. CaMELS: in silico prediction of calmodulin binding proteins and their binding sites[J]. Proteins, 2017,85(9):1724-1740.
[25] Tomasetti C, Iasevoli F, Buonaguro EF, et al. Treating the synapse in major psychiatric disorders: the role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions[J]. Int J Mol Sci, 2017,18(1):135.
[26] Woods NK, Padmanabhan J. Neuronal calcium signaling and Alzheimer’s disease [J]. Adv Exp Med Biol, 2012, 740: 1193-1217.
[27] Pasek JG, Wang XH, Colbran RJ. Differential CaMKⅡ regulation by voltage-gated calcium channels in the striatum[J]. Mol Cell Neurosci, 2015, 68:234-243.
[28] Churn SB, Rana A, Lee K, et al.Calcium/calmodulin-dependent kinase Ⅱ phosphorylation of the GABA(A) receptor alpha 1 subunit modulates benzodiazepine binding[J]. J Neurochem, 2002,82(5):1065-1076.
[29] Demir S, Bagirici F, Marangoz C. A calcium channel blocker nicardipine protects neurons from zinc - induced toxicity in rat hippocampus[J]. Neurosci Res Commun, 2002, 30(3): 135-141.
[30] Liu XB, Murray KD. Neuronal excitability and calcium/calmodulin-dependent protein kinase type Ⅱ: location, location, location[J]. Epilepsia, 2012,53:45-52.
[31] Ghosh A, Giese KP. Calcium/calmodulin-dependent kinase Ⅱ and Alzheimer’s disease[J]. Mol Brain, 2015, 8(1):78.
[32] Oka M, Fujisaki N, Maruko-Otake A, et al. Ca2+/calmodulin-dependent protein kinase Ⅱ promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy[J]. J Biochem, 2017,162(5):335-342.
[33] Min D, Guo F, Zhu S, et al. The alterations of Ca2+/calmodulin/CaMKⅡ/CaV1.2 signaling in experimental models of Alzheimer’s disease and vascular dementia[J]. Neurosci Lett,2013, 538:60-65. |