[1] Fingas C D, Best J, Sowa J P, et al. Epidemiology of nonalcoholic steatohepatitis and hepatocellular carcinoma [J]. Clinical Liver Disease, 2016, 8(5): 119-122.[2] Wong V W S, Chan W K, Chitturi S, et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017 [J]. Journal of Gastroenterology and Hepatology, 2018, 33(1): 70-85.[3] Beier J I, Banales J M. Pyroptosis: An inflammatory link between NAFLD and NASH with potential therapeutic implications [J]. Journal of Hepatology, 2018, 68(4): 643-645.[4] Schwabe R F, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death [J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(12): 738-752.[5] He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha [J]. Cell, 2009, 137(6): 1100-1111.[6] Welz P S, Wullaert A, Vlantis K, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation [J]. Nature, 2011, 477(7364): 330-334.[7] Bonnet M C, Preukschat D, Welz P S, et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation [J]. Immunity, 2011, 35(4): 572-582.[8] Zhang D, Lin J, Han J. Receptor-interacting protein (RIP) kinase family [J]. Cellular & molecular immunology, 2010, 7(4): 243-249.[9] McCarthy J V, Ni J, Dixit V M. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase [J]. J Biol Chem, 1998, 273(27): 16968-16975.[10] Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology [J]. Neuron, 2004, 44(4): 601-607.[11] Greggio E, Lewis P A, van der Brug M P, et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1 [J]. Journal of Neurochemistry, 2007, 102(1): 93-102.[12] Wen L, Zhuang L, Luo X, et al. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells [J]. J Biol Chem, 2003, 278(40): 39251-39258.[13] Feng S, Ma L, Yang Y, et al. Truncated RIP3 (tRIP3) acts upstream of FADD to induce apoptosis in the human hepatocellular carcinoma cell line QGY-7703 [J]. Biochem Biophys Res Commun, 2006, 347(3): 558-565.[14] Morgan M J, Kim Y S. The serine threonine kinase RIP3: lost and found [J]. BMB Rep, 2015, 48(6): 303-312.[15] Granger G A, Kolb W P. Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction [J]. J Immunol, 1968, 101(1): 111-120.[16] Wu J F, Huang Z, Ren J M, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis [J]. Cell Research, 2013, 23(8): 994-1006.[17] O'Donnell M A, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD [J]. Nature Cell Biology, 2011, 13(12): 1437-U1132.[18] Wallach D, Kang T B, Dillon C P, et al. Programmed necrosis in inflammation: Toward identification of the effector molecules [J]. Science, 2016, 352(6281): aaf2154.[19] Kaczmarek A, Vandenabeele P, Krysko D V. Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance [J]. Immunity, 2013, 38(2): 209-223.[20] Afonso M B, Rodrigues P M, Carvalho T, et al. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis [J]. Clin Sci (Lond), 2015, 129(8): 721-739.[21] Gautheron J, Vucur M, Reisinger F, et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis [J]. EMBO Mol Med, 2014, 6(8): 1062-1074.[22] Saeed W K, Jun D W, Jang K, et al. Mismatched effects of receptor interacting protein kinase-3 on hepatic steatosis and inflammation in non-alcoholic fatty liver disease [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24(48): 5477-5490.[23] 续畅, 刘泽洲, 许可嘉, 等. 高脂及MCD饮食诱导非酒精性脂肪性肝炎动物模型的比较 [J]. 现代生物医学进展, 2014, 14(18): 3451-3455.[24] Lee G S, Yan J S, Ng R K, et al. Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury [J]. J Lipid Res, 2007, 48(8): 1885-1896.[25] Hatsugai K , Ohkohchi N , Fukumori T , et al. Mechanism of primary graft non-function in a rat model for fatty liver transplantation[J].Transpl Int, 2000, 13(1 Supplement):S583-S590.[26] Gautheron J, Vucur M, Luedde T. Necroptosis in Nonalcoholic Steatohepatitis [J]. Cell Mol Gastroenterol Hepatol, 2015, 1(3): 264-265.[27] Vandenabeele P, Grootjans S, Callewaert N, et al. Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models [J]. Cell Death and Differentiation, 2013, 20(2): 185-187.[28] Northington F J, Chavez-Valdez R, Graham E M, et al. Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI [J]. Journal of Cerebral Blood Flow and Metabolism, 2011, 31(1): 178-189.[29] Chavez-Valdez R, Martin L J, Flock D L, et al. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia–ischemia [J]. Neuroscience, 2012, 219(1): 192-203.[30] Smith C C T, Davidson S M, Lim S Y, et al. Necrostatin: A potentially novel cardioprotective agent? [J]. Cardiovascular Drugs and Therapy, 2007, 21(4): 227-233.[31] Linkermann A, Brasen J H, Himmerkus N, et al. Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury [J]. Kidney International, 2012, 81(8): 751-761.[32] Oerlemans M, Liu J, Arslan F, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo [J]. Basic Research in Cardiology, 2012, 107(4): 270-270.[33] Kaiser W J, Upton J W, Long A B, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice [J]. Nature, 2011, 471(7338): 368-372.[34] Saeed W K, Jun D W. Necroptosis: an emerging type of cell death in liver diseases [J]. World J Gastroenterol, 2014, 20(35): 12526-12532.[35] Marra F, Tacke F. Roles for Chemokines in Liver Disease [J]. Gastroenterology, 2014, 147(3): 577-594.e571.[36] Miura K, Yang L, van Rooijen N, et al. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2 [J]. American Journal of Physiology - Gastrointestinal and Liver Physiology, 2012, 302(11): G1310-G1321. |