[1]Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system [J]. Physiol Rev, 2001, 81(2): 871-927.
[2]Nave KA. Myelination and the trophic support of long axons [J]. Nat Rev Neurosci, 2010, 11(4): 275-283.
[3]Stadelmann C, Timmler S, Barrantes-Freer A, et al. Myelin in the central nervous system: structure, function, and pathology [J]. Physiol Rev, 2019, 99(3): 1381-1431.
[4]Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration [J]. Nature, 2012, 487(7408): 443-448.
[5]Hill RA, Li AM, Grutzendler J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain [J]. Nat Neurosci, 2018, 21(5): 683-695.
[6]Wang F, Ren SY, Chen JF, et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory [J]. Nat Neurosci, 2020, 23(4): 481-486.
[7]Young KM, Psachoulia K, Tripathi RB, et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling [J]. Neuron, 2013, 77(5): 873-885.
[8]Bergles DE, Roberts JD, Somogyi P, et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus [J]. Nature, 2000, 405(6783): 187-191.
[9]Lin SC, Bergles DE. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus [J]. Nat Neurosci, 2004, 7(1): 24-32.
[10]Monje M. Myelin plasticity and nervous system function [J]. Annu Rev Neurosci, 2018, 41: 61-76.
[11]Xin W, Chan JR. Myelin plasticity: sculpting circuits in learning and memory [J]. Nat Rev Neurosci, 2020, 21(12): 682-694.
[12] Hughes EG, Orthmann-Murphy JL, Langseth AJ, et al. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex [J]. Nat Neurosci, 2018, 21(5): 696-706.
[13]Chang KJ, Redmond SA, Chan JR. Remodeling myelination: implications for mechanisms of neural plasticity [J]. Nat Neurosci, 2016, 19(2): 190-197.
[14]Mckenzie IA, Ohayon D, Li H, et al. Motor skill learning requires active central myelination [J]. Science, 2014, 346(6207): 318-322.
[15]Steadman PE, Xia F, Ahmed M, et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice [J]. Neuron, 2020, 105(1): 150-164.e6.
[16]Pan S, Mayoral SR, Choi HS, et al. Preservation of a remote fear memory requires new myelin formation [J]. Nat Neurosci, 2020, 23(4): 487-499.
[17]Gibson EM, Purger D, Mount CW, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain [J]. Science, 2014, 344(6183): 1252304.
[18]Auderset L, Pitman KA, Cullen CL, et al. Low-density lipoprotein receptor-related protein 1 (LRP1) is a negative regulator of oligodendrocyte progenitor cell differentiation in the adult mouse brain [J]. Front Cell Dev Biol, 2020, 8: 564351.
[19]Keiner S, Niv F, Neumann S, et al. Effect of skilled reaching training and enriched environment on generation of oligodendrocytes in the adult sensorimotor cortex and corpus callosum [J]. BMC Neurosci, 2017, 18(1): 31.
[20]Tripathi RB, Jackiewicz M, Mckenzie IA, et al. Remarkable stability of myelinating oligodendrocytes in mice [J]. Cell Rep, 2017, 21(2): 316-323.
[21]Bacmeister CM, Barr HJ, Mcclain CR, et al. Motor learning promotes remyelination via new and surviving oligodendrocytes [J]. Nat Neurosci, 2020, 23(7): 819-831.
[22]Benamer N, Vidal M, Balia M, et al. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits [J]. Nat Commun, 2020, 11(1): 5151.
[23]Yang SM, Michel K, Jokhi V, et al. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex [J]. Science, 2020, 370(6523):eabd2109.
[24]Arancibia-Cárcamo IL, Ford MC, Cossell L, et al. Node of ranvier length as a potential regulator of myelinated axon conduction speed [J]. Elife, 2017, 6:e23329.
[25]Etxeberria A, Hokanson KC, Dao DQ, et al. Dynamic modulation of myelination in response to visual stimuli alters optic nerve conduction velocity [J]. J Neurosci, 2016, 36(26): 6937-6948.
[26]Neely SA, Williamson JM, Klingseisen A, et al. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination [J]. Nat Neurosci, 2022, 25(4): 415-420.
[27]Mangin JM, Li P, Scafidi J, et al. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex [J]. Nat Neurosci, 2012, 15(9): 1192-1194.
[28]Chong SY, Rosenberg SS, Fancy SP, et al. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination [J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1299-1304.
[29]Barrera K, Chu P, Abramowitz J, et al. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation [J]. Dev Neurobiol, 2013, 73(4): 297-314.
[30]Hill RA, Patel KD, Goncalves CM, et al. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division [J]. Nat Neurosci, 2014, 17(11): 1518-1527.
[31]Murphy KM, Mancini SJ, Clayworth KV, et al. Experience-dependent changes in myelin basic protein expression in adult visual and somatosensory cortex [J]. Front Cell Neurosci, 2020, 14: 56.
[32]Liu J, Dietz K, Deloyht JM, et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice [J]. Nat Neurosci, 2012, 15(12): 1621-1623.
[33]Swire M, Kotelevtsev Y, Webb DJ, et al. Endothelin signalling mediates experience-dependent myelination in the CNS [J]. Elife, 2019, 8: e49493.
[34]Xiao L, Ohayon D, Mckenzie IA, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning [J]. Nat Neurosci, 2016, 19(9): 1210-1217.
[35]Kitamura T, Ogawa SK, Roy DS, et al. Engrams and circuits crucial for systems consolidation of a memory [J]. Science, 2017, 356(6333): 73-78.
[36]Teixeira CM, Pomedli SR, Maei HR, et al. Involvement of the anterior cingulate cortex in the expression of remote spatial memory [J]. J Neurosci, 2006, 26(29): 7555-7564.
[37]Sakry D, Neitz A, Singh J, et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2 [J]. PLoS Biol, 2014, 12(11): e1001993.
[38]Chen JF, Liu K, Hu B, et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease [J]. Neuron, 2021, 109(14): 2292-2307e5.
[39]Osipovitch M, Asenjo Martinez A, Mariani JN, et al. Human ESC-derived chimeric mouse models of huntington’s disease reveal cell-intrinsic defects in glial progenitor cell differentiation [J]. Cell Stem Cell, 2019, 24(1): 107-122.e7.
[40]Bartzokis G, Cummings JL, Sultzer D, et al. White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study [J]. Arch Neurol, 2003, 60(3): 393-398.
[41]Behrendt G, Baer K, Buffo A, et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men [J]. Glia, 2013, 61(2): 273-286.
[42]Mitew S, Kirkcaldie MT, Halliday GM, et al. Focal demyelination in Alzheimer’s disease and transgenic mouse models [J]. Acta Neuropathol, 2010, 119(5): 567-577.
|