[1]Mundt S, Greter M, Becher B. The CNS mononuclear phagocyte system in health and disease [J]. Neuron, 2022, 110(21): 3497-3512.
[2]Castellani G, Croese T, Peralta Ramos JM, et al. Transforming the understanding of brain immunity [J]. Science, 2023, 380(6640): eabo7649.
[3]Drieu A, Du S, Storck SE, et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid [J]. Nature, 2022, 611(7936): 585-593.
[4]Sun R, Jiang H. Border-associated macrophages in the central nervous system [J]. J Neuroinflammation, 2024,21(1):67.
[5]Kierdorf K, Masuda T, Jordo MJC, et al. Macrophages at CNS interfaces: ontogeny and function in health and disease [J]. Nat Rev Neurosci, 2019, 20(9): 547-562.
[6]Zhilei B, Yandong G, Tao H, et al. Deciphering human macrophage development at single-cell resolution [J]. Nature, 2020, 582(7813): 571-576.
[7]Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages [J]. Science, 2010, 330(6005): 841-845.
[8]Goldmann T, Wieghofer P, Jordão MJ, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces [J]. Nat Immunol, 2016, 17(7): 797-805.
[9]Masuda T, Amann L, Monaco G, et al. Specification of CNS macrophage subsets occurs postnatally in defined niches [J]. Nature, 2022, 604(7907): 740-748.
[10]Utz SG, See P, Mildenberger W, et al. Early fate defines microglia and non-parenchymal brain macrophage development [J]. Cell, 2020, 181(3): 557-573.e18.
[11]Van Hove H, Martens L, Scheyltjens I, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment [J]. Nat Neurosci, 2019, 22(6): 1021-1035.
[12]Cui J, Xu H, Lehtinen MK. Macrophages on the margin: choroid plexus immune responses [J]. Trends Neurosci, 2021, 44(11): 864-875.
[13]Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease [J]. Immunity, 2018, 48(2): 380-395.e6.
[14]Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease [J]. Nat Rev Immunol, 2018, 18(4): 225-242.
[15]Silvin A, Qian J, Ginhoux F. Brain macrophage development, diversity and dysregulation in health and disease [J]. Cell Mol Immunol, 2023, 20(11): 1277-1289.
[16]Fan F, Su B, Kolodychak A, et al. Hyaluronic acid hydrogels with phototunable supramolecular cross-linking for spatially controlled lymphatic tube formation [J]. ACS Appl Mater Interfaces, 2023, 15(50): 58181-58195.
[17]Ajami B, Samusik N, Wieghofer P, et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models [J]. Nat Neurosci, 2018, 21(4): 541-551.
[18]Gerganova G, Riddell A, Miller AA. CNS border-associated macrophages in the homeostatic and ischaemic brain [J]. Pharmacol Ther, 2022, 240: 108220.
[19]Jord?o MJC, Sankowski R, Brendecke SM, et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation [J]. Science, 2019, 363(6425):eaat7554.
[20]Kim JS, Kolesnikov M, Peled-Hajaj S, et al. A binary cre transgenic approach dissects microglia and CNS border-associated macrophages [J]. Immunity, 2021, 54(1): 176-190.e7.
[21]Dalmau Gasull A, Glavan M, Samawar SKR, et al. The niche matters: origin, function and fate of CNS-associated macrophages during health and disease [J]. Acta Neuropathol, 2024, 147(1): 37.
[22]Gerganova G, Riddell A, Miller AA. CNS border-associated macrophages in the homeostatic and ischaemic brain [J]. Pharmacol Ther, 2022, 240: 108220.
[23]Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science, 2005, 308(5726): 1314-1318.
[24]Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration [J]. Annu Rev Immunol, 2017, 35: 441-468.
[25]Russo MV, Latour LL, Mcgavern DB. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury [J]. Nat Immunol, 2018, 19(5): 442-452.
[26]Goldmann T, Wieghofer P, Jord?o MJC, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces [J]. Nat Immunol, 2016, 17(7): 797-805.
[27]Carpenter SJ, Mccarthy LE, Borison HL. Electron microscopic study of the epiplexus (Kolmer) cells of the cat choroid plexus [J]. Z Zellforsch Mikrosk Anat, 1970, 110(4): 471-486.
[28]Lu J, Kaur C, Ling EA. Uptake of tracer by the epiplexus cells via the choroid plexus epithelium following an intravenous or intraperitoneal injection of horseradish peroxidase in rats [J]. J Anat, 1993, 183: 609-617.
[29]Nakada T, Kwee IL, Igarashi H, et al. Aquaporin-4 functionality and virchow-robin space water dynamics: physiological model for neurovascular coupling and glymphatic flow [J]. Int J Mol Sci, 2017, 18(8):1798.
[30]Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein [J]. Transl Neurodegener, 2019, 8: 7.
[31]Jais A, Solas M, Backes H, et al. Myeloicell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity [J]. Cell, 2016, 165(4): 882-895
[32]Mendes NF, Velloso LA. Perivascular macrophages in high-fat diet-induced hypothalamic inflammation [J]. J Neuroinflammation, 2022, 19(1): 136.
[33]Zeisel A, Mu?oz-Manchado AB, Codeluppi S, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq [J]. Science, 2015, 347(6226): 1138-1142.
[34]Azucenas CR, Ruwe TA, Bonamer JP, et al. Comparative analysis of the functional properties of human and mouse ferroportin [J]. Am J Physiol Cell Physiol, 2023, 324(5): C1110-C1118.
[35]Wen W, Cheng J, Tang Y. Brain perivascular macrophages: current understanding and future prospects [J]. Brain, 2024, 147(1): 39-55.
[36]He H, Mack JJ, Gü? E, et al. Perivascular macrophages limit permeability [J]. Arterioscler Thromb Vasc Biol, 2016, 36(11): 2203-2212.
[37]Galanternik MV, Castranova D, Gore AV, et al. A novel perivascular cell population in the zebrafish brain [J]. Elife, 2017, 6: e24369.
[38]Serrats J, Schiltz JC, García-Bueno B, et al. Dual roles for perivascular macrophages in immune-to-brain signaling [J]. Neuron, 2010, 65(1): 94-106.
[39]Vasilache AM, Qian H, Blomqvist A. Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells toward enhanced prostaglandin E2 signaling [J]. Brain Behav Immun, 2015, 48: 31-41.
[40]Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease [J]. Nat Med, 2023, 29(9): 2187-2199.
[41]Tian ChL, Cerebral amyloid angiopathy [J]. Chinese Journal of Neurology, 2021, 54(5): 499-507. (in Chinaese)
田成林. 脑淀粉样血管病 [J]. 中华神经科杂志, 2021, (5): 499-507.
[42]Hawkes CA, Mclaurin J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy [J]. Proc Natl Acad Sci USA, 2009, 106(4): 1261-1266.
[43]Hu M, Li T, Ma X, et al. Macrophage lineage cellsderived migrasomes activate complement-dependent blood-brain barrier damage in cerebral amyloid angiopathy mouse model [J]. Nat Commun, 2023, 14(1): 3945.
[44]Mildner A, Schlevogt B, Kierdorf K, et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease [J]. J Neurosci, 2011, 31(31): 11159-11171.
[45]El Khoury J, Toft M, Hickman SE, et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease [J]. Nat Med, 2007, 13(4): 432-438.
[46]Taylor X, Clark IM, Fitzgerald GJ, et al. Amyloid-β (Aβ) immunotherapy induced microhemorrhages are associated with activated perivascular macrophages and peripheral monocyte recruitment in Alzheimer’s disease mice [J]. Mol Neurodegener, 2023, 18(1): 59.
[47]Sankowski R, Ahmari J, Mezö C, et al. Commensal microbiota divergently affect myeloid subsets in the mammalian central nervous system during homeostasis and disease [J]. EMBO J, 2021, 40(23): e108605.
[48]GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J]. Lancet Neurol, 2021, 20(10): 795-820.
[49]Wang CY, Cao LM, Shi J, et al. A prospective cohort study on blood pressure control and risk of ischemic stroke in patients with hypertension [J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2020, 54(7): 737-741.
[50]Liu Y, Jacobowitz DM, Barone F, et al. Quantitation of perivascular monocytes and macrophages around cerebral blood vessels of hypertensive and aged rats [J]. J Cereb Blood Flow Metab, 1994, 14(2): 348-352.
[51]Pedragosa J, Salas-Perdomo A, Gallizioli M, et al. CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage [J]. Acta Neuropathol Commun, 2018, 6(1): 76.
[52]Zhou J, Tang PC, Qin L, et al. CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses [J]. J Exp Med, 2010, 207(9): 1951-1966.
[53]Faraco G, Sugiyama Y, Lane D, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension [J]. J Clin Invest, 2016, 126(12): 4674-4689.
[54]Pires PW, Girgla SS, Mcclain JL, et al. Improvement in middle cerebral artery structure and endothelial function in stroke-prone spontaneously hypertensive rats after macrophage depletion [J]. Microcirculation, 2013, 20(7): 650-661.
[55]Bhargava P, Kim S, Reyes AA, et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition [J]. Brain, 2021, 144(5): 1396-1408.
[56]Lucchinetti CF, Popescu BF, Bunyan RF, et al. Inflammatory cortical demyelination in early multiple sclerosis [J]. N Engl J Med, 2011, 365(23): 2188-2197.
[57]Derk J, Jones HE, Como C, et al. Living on the edge of the CNS: meninges cell diversity in health and disease [J]. Front Cell Neurosci, 2021, 15: 703944.
[58]Merlini A, Haberl M, Strauß J, et al. Distinct roles of the meningeal layers in CNS autoimmunity [J]. Nat Neurosci, 2022, 25(7): 887-899.
[59]Chen QL, Ye HQ, Chen WW. The pathogenesis of iron and oxidative stress in multiple sclerosis and advances in MRI [J]. Chinese Journal of Magnetic Resonance Imaging, 2021,12(1):89-92.(in Chinese)
陈骞蓝, 叶海琪, 陈唯唯. 铁及氧化应激在多发性硬化中的作用机制及其MRI研究进展 [J]. 磁共振成像, 2021, 12(1): 89-92.
[60]Locatelli G, Theodorou D, Kendirli A, et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model [J]. Nat Neurosci, 2018, 21(9): 1196-1208.
[61]Ivan DC, Berve KC, Walthert S, et al. Insulin-like growth factor-1 receptor controls the function of CNS-resident macrophages and their contribution to neuroinflammation [J]. Acta Neuropathol Commun, 2023, 11(1): 35.
[62]Schonhoff AM, Figge DA, Williams GP, et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease [J]. Nat Commun, 2023, 14(1): 3754.
[63]Ochocka N, Segit P, Walentynowicz KA, et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages [J]. Nat Commun, 2021, 12(1): 1151.
[64]Guilliams M, Thierry GR, Bonnardel J, et al. Establishment and maintenance of the macrophage niche [J]. Immunity, 2020, 52(3): 434-451.
[65]Dani N, Herbst RH, Mccabe C, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages [J]. Cell, 2021, 184(11): 3056-3074.e21.
|