解剖学报 ›› 2016, Vol. 47 ›› Issue (6): 796-801.doi: 10.16098/j.issn.0529-1356.2016.06.013

• 解剖学 • 上一篇    下一篇

脑深髓静脉的磁敏感加权成像

陈争珍1 乔会煌2 郭玉1 任传根3 张小芬1 李建策3 陈成春1*   

  1. 1.温州医科大学解剖学教研室,浙江 温州 325035; 2.黄石二院放射科,湖北 黄石 435002; 3.温州医科大学附属第一医院 MRI 室,浙江 温州 325003
  • 收稿日期:2016-04-13 修回日期:2016-07-03 出版日期:2016-12-06 发布日期:2016-12-06
  • 通讯作者: 陈成春 E-mail:cccwzmc@126.com
  • 基金资助:

    脑髓质与基底核区静脉网络的 SWI 三维数字化构建

Susceptibility-weighted imaging of deep medullary veins

CHEN Zheng-zhen1 QIAO Hui-huang2 GUO Yu1 REN Chuan-gen3 ZHANG Xiao-fen1 LI Jian-ce3 CHEN Cheng-chun 1*   

  1. 1. Department of Human Anatomy of Wenzhou Medical University, Zhejiang Wenzhou 325035, China; 2. The Second Hospital Huangshi, Hubei Huangshi 435002, China; 3.Department of MRI, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang Wenzhou 325003,China
  • Received:2016-04-13 Revised:2016-07-03 Online:2016-12-06 Published:2016-12-06
  • Contact: CHEN Cheng-chun E-mail:cccwzmc@126.com

摘要:

目的 运用磁敏感加权成像(SWI)技术对健康人群深髓静脉进行显影,从而获取深髓静脉的管径、长度、分布及回流途径的数据。方法 对60名健康志愿者进行3.0T的磁共振检查。所得原始图像经Extended MR workspace 2.6.3.4图像工作站后处理后,获取相关数据。通过Photoshop CC 2015将T1WI与SWI重建图进行融合,分析静脉走形与周围脑组织的关系。结果 深髓静脉在SWI重建图像上能清晰显影,其直径较为统一,范围在0.2~0.3mm。根据深髓静脉的分布,可以将深髓静脉划分为3个区:前区位于额叶深部白质;中区位于中央前后回、缘上回、角回深部白质;后区位于枕叶深部白质。深髓静脉在前区的数量为4~10支;在中区为8~19支;在后区为3~7支。深髓静脉在中区的长度最长。前区、中区和后区的深髓静脉分别回流到透明隔前静脉和尾状核前静脉、尾状核横静脉、侧脑室内侧静脉。结论 SWI技术可以清晰显示深髓静脉,这为构建脑髓质静脉网络提供了可能,同时也为异常的深髓静脉的划定标准提供了依据。

关键词: 深髓静脉, 静脉回流, 磁敏感加权成像,

Abstract:

Objective To investigate the caliber, length, distribution and drainage of deep medullary veins by using susceptibility-weighted imaging (SWI). Methods Sixty healthy volunteers were examined using SWI on a 3.0T magnetic resonance system. The raw data were transferred to the Extended MR Workspace 2.6.3.4 workstation. The SWI images were reconstructed by using minimum intensity projections (mIPs) technique in the transverse plane. The SW images were combined with the corresponding images of T1WI by using Photoshop CC (Adobe Systems, USA) to visualize the positional relationship between the course of veins and the cerebral structures. Results Firstly, the caliber of deep medullary veins was basically same and ranged from 0.2-0.3mm. Secondly, according to the position, the deep medullary veins were divided into three area: the anterior, central and posterior. Thirdly, the incidence of the deep medullary veins ranged from 4-10 in the anterior area, 8-19 in the central area, 3-7 in the posterior area. Fourthly, the deep medullary veins in the central area were longer than other areas. Finally, the deep medullary veins in the anterior, central, posterior area were respectively drained into the anterior septal vein and anterior caudate vein, the transverse caudate vein, and the medial atrial vein. Conclusion Our study suggests that SWI of the deep medullary veins is feasible to create the cerebral medullary venous network without using a contrast agent and provides more theories to the classification and mechanism about abnormality of deep medullary veins.

Key words: Deep medullary vein, Venous drainage, Susceptibility-weighted imaging, Human