[1] Wei M, Zhang J, Jia M, et al. alpha/beta-hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors[J]. Proc Natl Acad Sci USA, 2016, 113(19): E2695-2704.
[2] Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging[J]. Dialogues Clin Neurosci, 2013, 15(1): 11-27.
[3] He XY, Li YJ, Kalyanaraman C, et al. GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors[J]. Proc Natl Acad Sci USA, 2016, 113(38): E5645-5654.
[4] Altimimi HF, Stellwagen D. Persistent synaptic scaling independent of AMPA receptor subunit composition[J]. J Neurosci, 2013, 33(29): 11763-11767.
[5] Lapierre L, Valastro B, Miceli D, et al. AMPA receptor modulation in previously frozen mouse brain sections: opposite effects of calcium in the cortex and hippocampus[J]. Hippocampus, 2000, 10(6): 645-653.
[6] Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease[J]. Nat Rev Neurosci, 2016, 17(6): 337-350.
[7] Savas JN, Ribeiro LF, Wierda KD, et al. The sorting receptor SorCS1 regulates trafficking of neurexin and AMPA receptors[J]. Neuron, 2015, 87(4): 764-780.
[8] Swanson GT. Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon[J]? Neuropsychopharmacology, 2009, 34(1): 249-250.
[9] Ziff EB. TARPs and the AMPA receptor trafficking paradox[J]. Neuron, 2007, 53(5): 627-633.
[10]Jensen Ⅴ, Kaiser KM, Borchardt T, et al. A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A[J]. J Physiol, 2003, 553(Pt 3): 843-856.
[11]Lee HK, Takamiya K, He K, et al. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus[J]. J Neurophysiol, 2010, 103(1): 479-489.
[12]Sanderson DJ, Sprengel R, Seeburg PH, et al. Deletion of the GluA1 AMPA receptor subunit alters the expression of short-term memory[J]. Learn Mem, 2011, 18(3): 128-131.[13]Hendriksen H, Bink DI, Daniels EG, et al. Re-exposure and environmental enrichment reveal NPY-Y1 as a possible target for posttraumatic stress disorder[J]. Neuropharmacology, 2012, 63(4): 733-742.
[14]Shaw G, Morse S, Ararat M, et al. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells[J]. FASEB J, 2002, 16(8): 869-871.
[15]Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins[J]. J Pharmacol Toxicol Methods, 2005, 51(3): 187-200.
[16]Varghese A, Tenbroek EM, Coles J, et al. Endogenous channels in HEK cells and potential roles in HCN ionic current measurements[J]. Prog Biophys Mol Biol, 2006, 90(1-3): 26-37.
[17]Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future[J]. Anal Bioanal Chem, 2010, 397(8): 3173-3178.
[18]Krishnan M, Park JM. Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging[J]. FASEB J, 2006, 27(1): 106-108.
[19]Jones JL. Cocaine experience guides dynamic changes in AMPA receptors within the nucleus accumbens[J]. J Neurosci, 2008, 28(12): 2967-2969.
[20]Kavalali ET. The mechanisms and functions of spontaneous neurotransmitter release[J]. Nat Rev Neurosci, 2015, 16(1): 5-16.
[21]Feng M,Zhang YJ,Lu J,et al. Abnormal expression of AMPA receptor in hippocampus of senescence accelerated mouse prone 8 correlated to synaptic plasticity[J]. Acta Anatomica Sinica, 2014, 45(1):15-19. (in Chinese)
封敏,张英俊,鲁娟,等. 快速老化小鼠P8海马神经元突触可塑性相关的AMPA受体表达异常[J]. 解剖学报,2014, 45(1):15-19.
|