[1] Iturriaga R, Oyarce MP, Dias ACR. Role of carotid body in intermittent hypoxia-related hypertension[J]. Curr Hypertens Rep, 2017, 19(5):38.
[2] McBryde FD, Abdala AP, Hendy EB, et al. The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension[J]. Nat Commun, 2013, 4(9):2395.
[3] Pijacka W, Moraes DJ, Ratcliffe LE, et al. Purinergic receptors in the carotid body as a new drug target for controlling hypertension[J]. Nat Med, 2016, 22(10):1151-1159.
[4] Platero-Luengo A, González-Granero S, Durán R, et al. An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia[J]. Cell, 2014, 156(1-2):291-303.
[5] Li ChH, Jia XL, Jin BZh, et al. Organotypic culture of carotid body from adult rat[J]. Chinese Journal of Anatomy, 2016, 39(06):652-655. (in Chinese)
李超红,贾祥磊,金保哲,等.成年大鼠颈动脉体组织培养[J].解剖学杂志,2016,39(6):652-655.
[6] Kumar P, Prabhakar NR. Peripheral chemoreceptors: function and plasticity of the carotid body[J]. Compr Physiol, 2012, 2(1):141-219.
[7] Rey S, Del Rio R, Iturriaga R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia[J]. Brain Res, 2006, 1086(1):152-159.
[8] Cho RW, Buhl LK, Volfson D, et al. Phosphorylation of complexin by PKA regulates activity-dependent spontaneous neurotransmitter release and structural synaptic plasticity[J].Neuron, 2015, 88(4):749-761.
[9] Nabhen SL, Morales VP, Guil MJ, et al. Mechanisms involved in the long-term modulation of tyrosine hydroxylase by endothelins in the olfactory bulb of normotensive rats[J]. Neurochem Int, 2011, 58(2):196-205.
[10] Nabhen SL, Guil MJ, Saffioti N, et al. Calcium-dependent mechanisms involved in the modulation of tyrosine hydroxylase by endothelins in the olfactory bulb of normotensive rats[J]. Neurochem Int, 2013, 62(4):389-398.
[11] Kato K, Yamamoto Y. Short-term hypoxia increases phosphorylated tyrosine hydroxylase at Ser31 and Ser40 in rat carotid body[J]. Respir Physiol Neurobiol, 2013, 185(3):543-546.
[12] Chen J, He L, Dinger B, et al. Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides[J]. Respir Physiol, 2000, 121(1):13-23.
[13] Liu JL, Wen ShJ, Zhao LM, et al. Effect of different concentrations of endothelin on intracellular calcium level in cultured human pericardial mesothelial cells[J]. Acta Anatomica Sinica, 2009, 40(03):419-422. (in Chinese)
刘洁琳,温绍君,赵莉敏,等.不同浓度内皮素对体外人心包间皮细胞内钙离子浓度的影响[J].解剖学报,2009,40(3):419-422.
[14] Chen Y, Tipoe GL, Liong E, et al. Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression[J]. Pflugers Arch, 2002, 443(4):565-573.
[15] Ure?a J, López-Barneo J. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels[J]. Trends Cardiovasc Med, 2012, 22(6):155-160.
[16] Munoz L. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease[J]. Neuropharmacology, 2010, 58(3):561-568.
[17] An Q. Effects of intracarotid injection of edothelin-1 on renal sympathetic nerve activity and the mechanisms in chronic intermittent hypoxia rats[D]. Hebei Medical University, 2014. (in Chinese)
安琪. 颈动脉内注射内皮素-1对间歇性低氧大鼠肾交感神经活动的影响及其机制[D]. 河北医科大学,2014.
|