[1] Haoran D, Qingquan L, Baoli L. Research progress on mechanism of podocyte depletion in diabetic nephropathy[J]. J Diabetes Res, 2017,16(7):1-10.
[2] Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: the regulatory interplay between epigenetics and microRNAs[J]. Pharmacol Res,2019,141(141):574-585.
[3] Jiao TT, Han QX, Zhang D, et al. Research progress in the mechanism of microRNA in diabetic nephropathy[J]. Chinese Electronic Journal of Nephrology Research, 2019, 8(3):138-141. (in Chinese)
焦婷婷, 韩秋霞, 张冬,等. 微小RNA在糖尿病肾病中的作用机制研究进展[J]. 中华肾病研究电子杂志, 2019, 8(3):138-141.
[4] Ling Z, Wang X, Tao T, et al. Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer[J]. J Exp Clin Cancer Res,2017,36(1):159-164.
[5] Khordadmehr M, Shahbazi R, Sadreddini S, et al. miR-193: A new weapon against cancer[J]. J Cell Physiol, 2019,16(11):1-12.
[6] Zhu YN, Ao Y, Li B, et al. Developmental disorder of podocytes and the related renal diseases[J]. Hereditas, 2018, 40(2): 116-125.
[7] Liu XCh, Wang GF, Zhang ShF. Aerobic exercise can improve kidney oxidative stress damage in diabetic nephropathy model mice[J]. Chinese Tissue Engineering Research,2020,24(17):2712-2717. (in Chinese)
刘晓晨,王改凤,张社峰.有氧运动可改善糖尿病肾病模型小鼠肾脏的氧化应激损伤[J].中国组织工程研究,2020,24(17):2712-2717.
[8] Jessica L. Harding1, Meda E, et al. Global trends in diabetes complications: a review of current evidence [J]. Diabetologia, 2019,62(62):3-16.
[9] Liang C, Liisa H, Changliang W, et al. Trends in the development of miRNA bioinformatics tools[J]. Brief Bioinform, 2019,20(5):1836-1852.
[10] Chen C, Cheng MCh. The progress of exosomes and their applications in renal diseases[J].Journal of Central South University (Medical Edition),2020,45(4):440-448. (in Chinese)
陈灿,成梅初.外泌体及其在肾脏疾病中的应用进展[J].中南大学学报(医学版),2020,45(4):440-448.
[11] Zhang Y, Ding T, Tang DX, et al. Effects of tripterygium glycosides on autophagy in renal cells of diabetic nephropathy rats and related mechanisms[J]. Acta Anatomica Sinica,2020,51(3):373-377. (in Chinese)
张筠,丁婷,唐东兴,等.雷公藤多苷对糖尿病肾病大鼠肾脏细胞自噬的影响及相关机制[J].解剖学报,2020,51(3):373-377.
[12] Zheng W, Pan ShK, Liu DW, et al. Progress in the treatment of diabetic nephropathy[J]. Chinese Journal of Nephrology, 2020, 36 (6): 476-480. (in Chinese)
郑文,潘少康,刘东伟,等.糖尿病肾病治疗进展[J].中华肾脏病杂志,2020,36(6):476-480.
[13] Zhang W, Ren Y, Li J. Application of miR-193a/WT1/PODXL axis to estimate risk and prognosis of idiopathic membranous nephropathy[J]. Renal Failure, 2019, 41(1):704-717.
[14] Zhibin H, Yong Z, Jianhua Z, et al. Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children[J]. Biomed Res Int, 2017, 1(29):1-6.
[15] Zapata-Benavides P, Arellano-Rodríguez M, Bollain-y-Goytia JJ, et al. Cytoplasmic localization of WT1 and decrease of miRNA-16-1 in nephrotic syndrome[J]. Biomed Res Int, 2017, 2(19):1-8.
[16] Miyauchi M, Toyoda M, Kobayashi K, et al. Hypertrophy and loss of podocytes in diabetic nephropathy[J]. Internal Med,2009,48(18):1615-1620.
[17] Shao ZhX, Xie JJ, Xu ZhH, et al. MicroRNA-21 transfection mediated changes in the biological behavior and radiosensitivity of esophageal squamous cell carcinoma cells[J]. Acta Anatomica Sinica, 2020, 51(3): 385-391. (in Chinese)
邵志雄,谢俊杰,徐振华,等.微小RNA-21转染介导食管鳞癌细胞生物学行为及细胞放射敏感性的变化[J].解剖学报,2020,51(3):385-391.
[18] Wang S, Diao YJ, Zhu BB. MiR-193a-5p suppresses cell proliferation and induces cell apoptosis by regulating HOXA7 in human ovarian cancer[J]. Neoplasma, 2020, 67(4):825-833.
[19] Wan J, Hou X, Zhou Z, et al. WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy[J]. Free Radic Biol Med,2017(108):280-299.
[20] Li J, Chen Y, Shen L, et al. Improvement of membranous nephropathy by inhibition of miR-193a to affect podocytosis via targeting WT1[J]. J Cell Biochem,2019,120(3):3438-3446.
[21] Wu C, Wang S, Xu C, et al. WT1 enhances proliferation and impedes apoptosis in KRAS mutant NSCLC via targeting cMyc[J]. Cell Physiol Biochem,2015,35(2):647-662.
|