[1]Kadam SS, Bhonde RR. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells[J]. Islets, 2010, 2(2):112-120.
[2]Wang GY, Zhao F, Hao YL, et al. Islet-like cells derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord co-cultured with rat pancreatic cells for transplantation to control type Ⅰ diabetes mellitus[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(40):7467-7473.
[3]Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125.
[4]Sherwood RI, Hashimoto T, O’Donnell CW, et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape[J]. Nat Biotechnol, 2014, 32(2):171-178.
[5]Chai ShH, Bao ChY. To compare the ability of human umbilical cord mesenchymal stem cells and bone marrow mesenchymal stem cells to differentiate into insulin-secreting cells [J]. Journal of Practical Medicine, 2014, 30(1): 52-54. (in Chinese)
柴树宏,鲍春艳. 人脐带间充质干细胞分化为胰岛素分泌细胞的能力比较[J]. 实用医学杂志,2014,30(1):52-54.
[6]Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters[J]. Mol Aspects Med, 2013, 34(2-3):121-138.
[7]Kapoor A, Yao W, Ying H, et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer[J]. Cell, 2014, 158(1):185-197.
[8]Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11):1121-1133.
[9]Zhang FX, Hong Y, Liang WM. Isolation and culture of human umbilical cord mesenchymal stem cells and analysis on their ultrastructural characteristics [J].Guiyang Medical College, 2013, 38 (1): 5-9. (in Chinese)
张芬熙, 洪艳, 梁文妹. 人脐带间充质干细胞的分离培养及超微结构特点研究[J]. 贵阳医学院学报, 2013, 38(1):5-9.
[10]Tian MT, Hong Y, Han J, et al. Expression of Hes1 during transdifferentiation of hUMSCs into islet progenitor cells [J]. World Chinese Journal of Digestion, 2016 (9): 1357-1365. (in Chinese)
檀梦天, 洪艳, 韩晶,等. Hes1在hUMSCs向胰岛前体细胞诱导过程中的表达改变[J]. 世界华人消化杂志, 2016(9):1357-1365.
[11]Hang Y, Yamamoto T, Benninger RK, et al. The MafA transcription factor becomes essential to islet β-cells soon after birth[J]. Diabetes, 2014, 63(6):1994-2005.
[12]Richardson CC, Hussain K, Jones PM, et al. Low levels of glucose transporters and K+ ATP channels in human pancreatic beta cells early in development[J]. Diabetologia, 2007, 50(5):1000-1005.
[13]Pasquali L. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants[J]. Nat Genet, 2014, 46(2):136-143.
[14]Shih HP, Wang A, Sander M. Pancreas Organogenesis: From Lineage Determination to Morphogenesis[J]. Annu Rev Cell Dev Biol, 2013, 29:81-105.
[15]Benner C, Meulen TVD, Cacéres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression[J]. BMC Genomics, 2014, 15(1):620.
[16]Ohtsubo K, Chen MZ, Olefsky JM, et al. Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport[J]. Nat Med,2011, 17(9):1067-1075.[17]Leturque A, Brotlaroche E, Gall ML. GLUT2 mutations, translocation, and receptor function in diet sugar managing[J]. Ame J Physiol Endocrinol Metab, 2009, 296(5):E985-E992.[18]Thorens B. GLUT2, glucose sensing and glucose homeostasis[J]. Diabetologia, 2015, 58(2):221-232.
[19]Eddouks M, Bidi A, Ei Bouhali B, et al. Antidiabetic plants improving insulin sensitivity[J]. J Pharm Pharmacol, 2014, 66(9):1197-1214.
[20]Shu S, Liu H, Wang M, et al. Subchronic olanzapine treatment decreases the expression of pancreatic glucose transporter 2 in rat pancreatic β cells[J]. J Endocrinol Invest, 2014, 37(7):667-673.
[21]Hagenfeldt-Johansson KA, Herrera PL, Wang H, et al. Beta-cell-targeted expression of a dominant-negative hepatocyte nuclear factor-1 alpha induces a maturity-onset diabetes of the young (MODY)3-like phenotype in transgenic mice[J]. Endocrinology, 2013, 142(12):5311-5320.
[22]Guillam MT, Dupraz P, Thorens B. Glucose uptake, utilization, and signaling in GLUT2-null islets[J]. Diabetes, 2000, 49(9):1485.
[23]Wang ZV, Mu J, Schraw TD, et al. PANIC-ATTAC: a mouse model for inducible and reversible β-cell ablation[J]. Diabetes, 2008, 57(8): 2137-2148.
[24]Guo J, Teng LP, De W. Gene expression of different stages of pancreas development in rats [J]. Advances in Modern Biomedicine, 2010, 10 (15): 2847-2850. (in Chinese)
郭静, 滕丽萍, 德伟,等. 大鼠胰腺发育不同阶段基因表达分析[J]. 现代生物医学进展, 2010, 10(15):2847-2850.
[25]Yuan QX,Teng LP,Xu KF,et al. The functional maturation of insulin secretion during pancreatic development in rat [J].Journal of Nanjing Medical University (Natural Science Edition), 2010, 30 (11): 1568-1574. (in Chinese)
袁庆新, 滕丽萍, 徐宽枫,等. 大鼠胰腺发育过程中胰岛素释放功能完善的研究[J]. 南京医科大学学报(自然科学版), 2010, 30(11):1568-1574.
[26]Zhao L, Li Z, Kullin M, et al. Alterations in net glucose uptake and in the pancreatic B-cell GLUT2 transporter induced by diazoxide and by secretory stimuli[J]. J Endocrinol, 2005, 185(2):291-299.
[27]Lee EY, Kaneko S, Jutabha P, et al. Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion[J]. J Endocrinol, 2015, 224(3):205-214.
|