[1]Abbe E. Beitrge zur theorie des mikroskops unddermikroskopischen wahrnehmung[J].Arch Mikroskop Anat,1873,9:413-420.
[2]Nickell S, Kofler C, Leis AP, et al. A visual approach to proteomics[J]. Nat Rev Mol Cell Biol,2006,7(3):225-230.
[3]Hell SW. Improvement of lateral resolution in far-field fluorescence light microscopy by using two-photon excitation with offset beams[J].Opt Commun, 1994,106(1-3):19.
[4]Willig KI, Rizzoli SO, Westphal Ⅴ, et al.STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J].Nature,2006, 440(7086):935-939.
[5]Hell SW. Toward fluorescence nanoscopy[J]. Nat Biotechnol, 2003, 21(11):1347-1355.
[6]Kittel RJ, Wichmann C, Rasse TM,et al.Bruchpilotpromotes active zone assembly, Ca2+channel clustering, and vesicle releasey[J]. Science,2006, 312(5776):1051-1054.
[7]Schneckenburger H. Total internal reflection fluorescence microscoy: technical innovations and novel application[J]. Curr Opi Biotechnol, 2005, 16(1):13.
[8]Wang Ch, Wang GY, Xu ZhZh. Total internal reflection fluorescence microscopy[J]. Progress in Physics, 2002, 22(4): 406-415. (in Chinese)
王琛,王桂英,徐至展. 全内反射荧光显微术[J]. 物理学进展, 2002, 22(4):406-415.
[9]Kang SH, Kim YJ, Yeung ES. Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy[J].Anal Bioanal Chem,2007,387(8):2663-2671.
[10]Alicia S, Angélica Z, Carlos S, et al.STIM1 converts TRPC1 from a receptor-operatedto a store-operated channel: Moving TRPC1 inand out of lipid rafts[Z]. Cell Calcium,2008,44(5):479-491.
[11]Steyer JA, Almers W.A real-time view of life within 100nm of the plasmamembrane[J]. Nat Rev Mol Cell Biol, 2001,2(4):268-275.
[12]Sako Y, Ichinose J, Morimatsu M,etal.Opticalbioimaging: from living tissue to a single molecule:single molecule visualization of cell signalling processes ofepidermal growth factor receptor[J].J Pharmacol Sci, 2003,93(3):253-258.
[13]Xia S, Xu L, Bai L, et al. Labeling and dynamic imagingof synaptic vesicle-like microvesicles in PC12 cells using TIRFM[J]. Brain Res, 2004, 997(2):159-164.
[14]Adams MC, Salmon WC, Gupton SL, et al. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells[J]. Methods, 2003,29(1):29-41.
[15]Li HY, Zhang Zh, Pu ZhB, et al. Study on microlens-array confocal microscopy measurement technology[J]. Optical Technique, 2008, 34(1):94-97. (in Chinese)
李海燕,张琢,浦昭邦,等. 共焦显微扫描探测技术的发展[J].光学技术,2008,34(1):94-97.
[16]Petráň M, Hadravsky M, Boyde A. The tandem scanning reflected light microscope[J]. Int Agrophys, 1995, 9(4):661-664.
[17]Tadakuma H, Yamaguchi J, Ishihama Y, et al. Imaging of single fluorescent molecules using video-rate confocal microscopy[J]. Biochem Biophys Res Commun, 2001, 287(2):322.
[18]Ou G, Blacque OE, Snow JJ, et al. Functional coordination of intraflagellar transport motors[J]. Nature,2005,436 (7050):583-587.
[19]Xie XS, Yu J, Yang WY. Living cells as test tubes[J]. Science,2006, 312(5771):228-230.
[20]Evans CL,Potma EO, Puoris’haag M, et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J].Proc Natl Acad Sci USA,2005,102(46):16807-16812.
[21]Li HM, Fang XX, Chen JJ, et al. Progress in application of quantum dot labeling to biology[J]. Biomedical Engineering Foreing Medical Sciences, 2004, 27(5):281-285. (in Chinese)
李鸿梅,房学迅,陈娟娟,等.量子点荧光标记应用于生物学的研究进展[J].国外医学生物医学工程分册, 2004, 27(5):281-285.
[22]Bruchez MJ, Moronne M, Gin P, et al.Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281 (5385):2013-2016.
[23]Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
[24]Alivisatos AP. Semiconductorclusters,nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
[25]Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells in vivo imaging and diagnostics[J]. Science, 2005,307 (5709):538-544.
[26]Dahan M, Laurence T, Pinaud F, et al. Time-gated biological imaging by use of colloidal quantum dots[J]. Opt Lett, 2001, 26(11):825-827.
[27]Derfus AM, Chan WCW, Bhatia SN. Intracellular delivery of quantum dots for live cell labeling and organelle tracking[J]. Advanced Materials, 2004, 16(12): 961-966.
[28]Winter JO, Liu TY, Korgel BA,et al.Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells[J]. Adv Mater,2010,13(22):1673-1677.
[29]Akerman ME, Chan WC, Laakkonen P,et al. Nanocrystal targeting in vivo [J]. Proc Natl Acad Sci USA, 2002, 99(20): 12617-12621.
[30]Giepmans BN, Adams SR, Ellisman MH,et al.The fluorescent toolbox for assessing proteinlocation and function[J].Science, 2006, 312(5771):217-224.
[31]Shaner NC, Patterson GH, Davidson MW.Advances in fluorescent protein technology[J]. J Cell Sci, 2007,120(24):4247-4260.
[32]Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J], J Cell Comp Physiol, 1962, 59: 223-239.
[33]Chalfiee M, Tu Y, Euskirchen G,et al.Green fluorescent protein as a marker for gene expression[J].Science,1994,263(5148):802-805,
[34]Tsien RY.The green fluorescent protein [J]. Tsien RY Biochem,1998, 67: 509-544.
[35]Bates M, Blosser TR, Zhuang X. Short-range spectroscopic ruler based on a single-molecule optical switch[J].Phys Rev Lett,2005, 94(10):108101-108104.
[36]Bates M, Huang B, Dempsey GT, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J].Science,2007, 317(5845):1749-1753.
[37]Huang B,Wang W, Bates M, et al.Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science,2008,319(5864):810-813.
[38]F?rster Th. Delocalized excitation and excitation transer. In: Sinanoglu O, ed. Modern Quantum Chemistry Part Ⅲ[M]. New York: Academic Press, 1965:93-137.
[39]Takanishi CL, Bykova EA, Cheng W, et al.GFP-based FRET analysis in live cells[J].Brain Res,2006,1091(1):132-139.
[40]Rahul R,Hohng S,Ha T.A practical guide to single-molecule FRET[J].Nat Methods,2008, 5(6):507-516.
[41]Hu LA, Zhou T, Hamman BD, et al. Ahomogeneous G protein-coupled receptor ligand binding assay based on time-resolved fluorescence resonance energy transfer[J]. Assay and Drug Dev Technol, 2008, 6(4):543-550.
[42]Zheng D. Fluorescence resonance energy transfer microscopy and its recent development [J].Modern Instrument and Medical Treatment, 2003, 9(1):43-46. (in Chinese)
郑东.荧光共振能量转移显微术及其新进展[J].新技术应用, 2003, 9(1):43-46.
[43]Taylor KA, Glaeser RM. Electron diffraction of frozenhydrated protein crystals[J]. Science, 1974, 186(4168):1036-1037.
[44]Dubochet J, Adrian M, Chang JJ, et al. Cryo-electron microscopy of vitri-fiedspecimens[J]. Q Rev Biophys,1988, 21(2):129-228.
[45]DeRosier DJ, Klug A. Reconstruction of three dimensionalstructures from electron micrographs[J]. Nature, 1968, 217(5124):130-134.
[46]Walz T, Grigorieff N. Electron crystallography of two-dimensional crystals of membrane proteins[J]. J Struct Biol, 1998, 121(2):142-161.
[47]Robinson CV, Sali A, Baumeister W.The molecular sociology of the cell[J]. Nature, 2007, 450(172): 973-982.
[48]Chiu W, Baker ML, Jiang W, et al. Deriving folds ofmacromolecular complexes through electron cryo-microscopyand bioinformatics approaches[J].Curr Opin Struc Biol, 2002, 12(2):263-269.
[49]Van Heel M, Gowen B, Matadeen R, et al. Single-particle electron cryo-microscopy: towardsatomic resolution[J]. Q Rev Biophys, 2000, 33(4):307-369.
[50]Zhu P, Liu J, Bess JJr, et al. Distribution and three-dimensionalstructure of AIDS virus envelope spikes[J]. Nature, 2006, 441(15): 847-851.
[51]Hart RG. Electron microscopy of unstained biological material: the polytropic montage[J].Science, 1968, 159(3822): 1464-1467.
[52]Medalia O, Weber I,Fraugkis AS, et al. Macromoleculararchitecture in eukaryotic cells visualized by cryoelectrontomography[J].Science, 2002, 298(8): 1209-1213.
[53]Beck M, F?rster F, Ecke M, et al.Nuclear pore complex structure and dynamics revealed by cryoelectron tomography[J]. Science, 2004, 306(5700):1387-1390.
|