[1] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rodlike structures[J].Proc Natl Acad Sci USA, 1976, 73(11):3852-3856.
[2] Arnberg AC,Van Ommen GJ, Grivell LA, et al. Some yeast mitochondrial RNAs are circular[J].Cell, 1980, 19(2):313-319.
[3] Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J].Cell, 1991, 64(3):607-613.
[4] Cocquerelle C, Mascrez B, Hetuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1):155-160.
[5] Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript[J].J Biol Chem, 1999, 274(12):8153-8160.
[6] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388.
[7] Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo[J]. RNA, 2015, 21(9):1554-1565.
[8] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157.
[9] Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6):1125-1134.
[10] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J].Clin Chem, 2015, 61(1):221-230.
[11] Zang XY,Geng XF,Zhang ChY,et al. Role of microRNAs in liver regeneration[J]. Acta Anatomica Sinica, 2017, 48(2):230-235.(in Chinese)
臧夏炎, 耿小芳, 张春艳, et al. microRNAs在肝再生中的作用研究进展[J]. 解剖学报, 2017, 48(2):230-235.
[12] Zeng K, Chen X, Xu M, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7[J]. Cell Death Dis, 2018, 9(4):417.
[13] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1):55-66.
[14] Du WW, Fang L, Yang WN, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death and Differ, 2017, 24(2): 357-370.
[15] Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402-1412.
[16] Hu X, Ao J, Li X, et al. Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia[J].Clin Epigenetics, 2018, 10(1):48.
[17] Zong L, Sun Q, Zhang H, et al. Increased expression of circRNA_102231 in lung cancer and its clinical significance[J]. Biomed Pharmacother, 2018, 102:639-644.
[18] Li PF, Chen SC, Chen HL, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444:132-136.
[19] Li Y, Zheng QP, Bao CY, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8):981-984.
[20] Li L, Guo J, Chen Y, et al. Comprehensive CircRNA expression profile and selection of key circRNAs during priming phase of rat liver regeneration[J]. BMC Genomics, 2017, 18(1):80.
[21] Guo XY, Chen JN, Sun F, et al. circRNA_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev, 2017, 2017:3960197.
[22] Guo XY, Sun F, Chen JN, et al. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol, 2018, 24(3):323-337.
[23] Xiao J, Lv D, Zhao Y, et al. miR-149 controls non-alcoholic fatty liver by targeting FGF-21[J]. J Cell Mol Med, 2016, 20(8):1603-1608.
[24] Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver[J]. Clini Chimi Acta, 2013, 424:99-103.
[25] Tan YW, Ge GH, Pan TL, et al. A pilot study of serum micrornas panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease[J]. PLoS One, 2014, 9(8):e105192.
[26] Braza-Boils A, MariAlexandre J, Molina P, et al. Deregulated hepatic microRNAs underlie the association between non-alcoholic fatty liver disease and coronary artery disease[J]. Liver Int, 2016, 36(8):1221-1229.
[27] Jin X, Feng CY, Xiang Z, et al. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis[J]. Oncotarget, 2016, 7(41):66455-66467.
[28] Qiao DD, Yang J, Lei XF, et al. Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features[J]. Eur Rev Med Pharmacol Sci, 2017, 21(4):742-747.
[29] Xie Y, Yao Q, Butt AM, et al. Expression profiling of serum microRNA-101 in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma[J].Cancer Biol Ther, 2014, 15(9):1248-1255.
[30] Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection[J]. Lancet Infect Dis, 2005, 5(9):558-567.
[31] Chen S, Ni M, Yu B, et al. Construction and identification of a human liver specific microRNA eukaryotic expression vector[J]. Cell Mol Immunol, 2007, 4(6):473-477.
[32] Ghosal S, Das S, Sen R, et al. HumanViCe: host ceRNA network in virus infected cells in human[J]. Front Genet, 2014, 5(2014):249.
[33] Nieder-Rohrmann A, Dunnes N, Gerresheim GK, et al. Cooperative enhancement of translation by two adjacent microRNA-122/Argonaute 2 complexes binding to the 5’untranslated region of hepatitis C virus RNA[J]. J Gen Virol, 2017, 98(2):212-224.
[34] Jost I, Shalamova LA, Gerresheim GK, et al. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges[J]. RNA Biol, 2018,15(8):1032-1039.
[35] Zhu RX, Seto WK, Lai CL, et al. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region[J]. Gut Liver, 2016, 10(3):332-339.
[36] Riordan JD, Feddersen CR, Tschida BR, et al. Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice[J]. Hepatology, 2017, 67(3):924-939.
[37] Han D, Li J, Wang H, et al. Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression[J]. Hepatology, 2017, 66(4):1151-1164.
[38] Yu L, Gong X, Sun L, et al. The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression[J]. PLoS One, 2016, 11(7): e0158347.
[39] Fu LY, Yao T, Chen QQ, et al. Screening differential circular RNA expression profiles reveals hsa_ circ_ 0004018 is associated with hepatocellular carcinoma[J]. Oncotarget, 2017, 8(35):58405-58416.
[40] Yu J, Xu QG, Wang ZG, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma[J]. J Hepatol, 2018, 68(6):1214-1227.
[41] Zhong LH, Wang YY, Cheng Y, et al. Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway[J]. Biochemical and Biophysical Research Communications, 2018, 499(4):1044-1049.
[42] Huang X Y, Huang Z L, Xu Y H, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma[J]. Sci Rep, 2017, 7(1):5428.
[43] Qin M, Liu G, Huo X, et al. Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma[J]. Cancer Biomarkers, 2016, 16(1):161-169.
[44] Zhang X, Qiu S, Luo P, et al. Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis[J]. Cancer Biomarkers, 2018, 22(1):135-142.
[45] Yao ZC, Luo JY, Hu KP, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways[J]. Mol Oncol, 2017, 11(4):422-437.
[46] Shang XC, Li GZ, Liu H, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development[J]. Medicine, 2016, 95(22):e3811.
[47] Hu J, Li P, Song Y, et al. Progress and prospects of circular RNAs in Hepatocellular carcinoma: Novel insights into their function[J]. J Cell Physiol, 2018, 233(6):4408-4422.
[48] Guo XY, He CX, Wang YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int, 2017,2017(22):1-13.
[49] Fu L, Chen Q, Yao T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma[J]. Oncotarget, 2017, 8(27):43878-43888.
[50] Wang BG, Li JS, Liu YF, et al. MicroRNA-200b suppresses the invasion and migration of hepatocellular carcinoma by downregulating RhoA and circRNA_000839[J]. Tumour Biol, 2017, 39(7):1010428317719577. |