[1] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 [J]. Int J Cancer, 2015, 136(5):E359-386.
[2] Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease [J]. Nat Rev Clin Oncol, 2016, 13(11):674-690.
[3] Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes [J]. J Clin Oncol, 2009, 27(8):1160-1167.
[4] Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer [J]. Breast Cancer Res, 2010, 12(5):R68.
[5] Ricardo S, Vieira AF, Gerhard R, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype [J]. J Clin Pathol, 2011, 64(11):937-946.
[6] Holliday DL, and Speirs V, Choosing the right cell line for breast cancer research [J]. Breast Cancer Res, 2011, 13(4):215.
[7] Andersen JN, Sathyanarayanan S, Di Bacco A, et al. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors [J]. Sci Transl Med, 2010, 2(43):43ra55.
[8] Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options [J]. Semin Cancer Biol, 2018, 53:59-74.
[9] Maugeri-Sacca M, De Maria R. Hippo pathway and breast cancer stem cells [J]. Crit Rev Oncol Hematol, 2016, 99:115-122.
[10] Whitfield ML, Sherlock G, Saldanha AJ, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors [J]. Mol Biol Cell, 2002, 13(6):1977-2000.
[11] Prescott JE, Osthus RC, Lee LA, et al. A novel c-Myc-responsive gene, JPO1, participates in neoplastic transformation [J]. J Biol Chem, 2001, 276(51):48276-48284.
[12] Goto Y, Hayashi R, Muramatsu T, et al. JPO1/CDCA7, a novel transcription factor E2F1-induced protein, possesses intrinsic transcriptional regulator activity [J]. Biochim Biophys Acta, 2006, 1759(12):60-68.
[13] Guiu J, Bergen DJ, De Pater E, et al. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence [J]. J Exp Med, 2014, 211(12):2411-2423.
[14] Ye L, Li F, Song Y, et al. Overexpression of CDCA7 predicts poor prognosis and induces EZH2-mediated progression of triple-negative breast cancer [J]. Int J Cancer, 2018, 143(10):2602-2613.
[15] Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities [J]. Cell, 2017, 169(6):985-999.
[16] Van Camp JK, Beckers S, Zegers D, et al. Wnt signaling and the control of human stem cell fate [J]. Stem Cell Rev Rep, 2014, 10(2):207-229.
[17] Alexander CM. The wnt signaling landscape of mammary stem cells and breast tumors [J]. Prog Mol Biol Transl Sci, 2018, 153:271-298.
[18] Yu QC, Verheyen EM, Zeng YA. Mammary development and breast cancer: a wnt perspective [J]. Cancers (Basel), 2016, 8(7):65.
[19] Mohammed MK, Shao C, Wang J, et al. Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance [J]. Genes Dis, 2016, 3(1):11-40.
[20] Domenici G, Aurrekoetxea-Rodriguez I, Simoes BM, et al. A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells [J]. Oncogene, 2019, 38(17):3151-3169.
[21] Feng W, Liu S, Zhu R, et al. SOX10 induced Nestin expression regulates cancer stem cell properties of TNBC cells [J]. Biochem Biophys Res Commun, 2017, 485(2):522-528.
[22] Ihemelandu CU, Naab TJ, Mezghebe HM, et al. Basal cell-like (triple-negative) breast cancer, a predictor of distant metastasis in African American women [J]. Am J Surg, 2008, 195(2):153-158.
|