[1] Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma [J]. Lancet, 2003, 362(9399): 1907-1917.
[2] Yang T, Zhang J, Lu JH, et al. A new staging system for resectable hepatocellular carcinoma: comparison with six existing staging systems in a large Chinese cohort [J]. J Cancer Res Clin Oncol, 2011, 137 (5):739-750.
[3] Aylon Y, Oren M. Living with p53, dying of p53 [J]. Cell, 2007, 130(4): 597-602.
[4] Carmer E, Raj K. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death [J]. Cell Cycle, 2008, 7(3): 277-282.
[5] Lin ZhX, Zhang PF, Jiang CZh, et al. The exploration of relationship between immunohistochemistry of LN, FN, p53 and tumorous invasion microecosystem in human brain glioma [J]. Acta Anatomica Sinica,2002,33(4): 360-365. (in Chinese)
林志雄,张鹏飞,江常震,等. 人脑胶质瘤中LN、FN及p53基因蛋白的免疫组织化学与其侵袭微生态系统的相关性探讨 [J]. 解剖学报,2002,33(4): 360-365.
[6] Soussi T, Ishioka C, Claustres M, et al.Locus-specific mutation databases: pitfalls and good practice based on the p53 experience [J]. Nat Revi Cancer, 2006, 6(1): 83-90.
[7] Cancer Genome Atlas Research Network, Electronic address:wheeler@bcm.edu. Comprehensive and integrative genomic characterization of hepatocellular carcinoma [J]. Cell, 2017, 169(7): 1327-1341.
[8] Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase Akt pathway in human cancer [J]. Nat Rev Cancer, 2002, 2(7), 489-501.
[9] Sheppard K, Kinross KM, Solomon B, et al. Targeting PI3 kinase/Akt/mTOR signaling in cancer [J]. Crit Rev Oncog, 2012, 17(1): 69-95.
[10] Kornelius S, Sandrine I, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets [J]. Nat Genet, 2015, 47(5): 505-511.
[11] Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/Akt-a major therapeutic target [J]. Biochim Biophys Acta, 2004, 1697(1-2): 3-16.
[12] Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer [J]. Cell cycle, 2009, 8(16): 2502-2508.
[13] Su JS, Woods SM, Ronen SM. Metabolic consequences of treatment with Akt inhibitor perifosine in breast cancer cells [J]. NMR Biomed, 2012, 25(2): 379-388.
[14] Chen WS, Xu PZ, Gottlob K, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene [J]. Genes Dev, 2001, 15(17): 2203-2208.
[15] Cho H, Thorvaldsen JL, Chu Q, et al. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J]. J Biol Chem, 2001, 276(42): 38349-38352.
[16] Hartmann W, Digonsontgerath B, Koch A, et al. Phosphatidylinositol 3’-kinase/Akt signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN[J]. Clin Cancer Res, 2006, 12(10): 3019-3027.
[17] Suzuki Y, Toquenaga Y. Effects of information and group structure on evolution of altruism: analysis of two-score model by Covariance and contextual analyses [J]. J Theor Bio, 2005, 232(2): 191-201.
[18] Mottet D, Dumont V, Deceache Y, et al. Regulation of hypoxia-inducible factor-1 alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 beta pathway in HepG2 cells [J].J Biol Chem, 2003, 278(33): 31277-31285.
[19] Liu L, Zhu S, Gong I, et al. K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis [J]. PLoS One, 2008, 3(8): e2850.
[20] Hernandez A, lcoceba R, Sangro B, et al. Genetherapy of liver cancer [J]. Ann Hepatol, 2007, 6(1): 5-14.
[21] Bourdon JC, Laurenzi VD, Melion G, et al. p53: 25 years of research And more questions to answer [J]. Cell Death Differ, 2003, 10(4): 397-399.
[22] Senzer N, Nemunaitis J, Nemunaitis D, et al. Phase Ⅰ study of a systemically delivered p53 nanoparticle in advanced solid tumors [J]. Mol Ther, 2013, 21(5): 1096-1103.
[23] Cheson BD. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma [J]. N Engl J Med, 2014, 370(11): 1008-1018.
[24] Zhang L, Gao L, Li Y, et al. Effects of plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell growth [J]. Clin Cancer Res,2008, 14(2): 559-568.
[25] Wang GM, Ren ZX, Wang PS, et al. Plasmid-based Stat3-specific siRNA and GRIM-19 inhibit the growth of thyroid cancer cells in vitro and in vivo [J]. Oncol Rep,2014, 32(2): 573-580.
[26] Li X, Li Y, Hu J, et al. Plasmid-based E6-specific siRNA and co-expression of wild-type p53 suppresses the growth of cervical cancer in vitro and in vivo [J]. Cancer Lett, 2013, 335(1): 242-250.
|