[1] Liu SQ, Zhang Y, Sun J, et al. Progress of mechanism and therepy on cerebral vasospasm after subarachnoid hemorrhage[J]. Acta Anatomica Sinca, 2019, 50(4): 537-542. (in Chinese)
刘思齐,张艳,孙娟,等. 蛛网膜下腔出血后继发性脑血管痉挛的研究进展[J].解剖学报, 2019, 50(4): 537-542.
[2] Li G, Wang QS, Lin TT. Alterations in the expression of protease-activated receptor 1 and tumor necrosis factorα in the basilar artery of rats following a subarachnoid hemorrhage[J]. Exp Ther Med, 2016, 11(3): 717-722.
[3] Xu T, Zhang WG, Sun J, et al. Protective effects of thrombomodulin on microvascular permeability after subarachnoid hemorrhage in mouse model[J]. Neuroscience, 2015; 299:18-27.
[4] He J, Liu M, Liu Z, et al. Recombinant osteopontin attenuates experimental cerebral vasospasm following subarachnoid hemorrhage in rats through an anti-apoptotic mechanism[J]. Brain Res, 2015, 1611: 74-83.
[5] Chang CZ, Wu SC, Chang CM, et al. Arctigenin, a potent ingredient of arctium lappa l, induces endothelial nitric oxide synthase and attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt pathway in a rat model[J]. Biomed Res Int, 2015, 2015: 490209.
[6] Peng XQ, Damarla M, Skirball J, et al. Protective role of PI3-kinase/Akt/eNOS signaling in mechanical stress through inhibition of p38 mitogen-activated protein kinase in mouse lung[J]. Acta Pharmacol Sin, 2010, 31(2): 175-183.
[7] Kivell B, Uzelac Z, Sundaramurthy S, et al. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism[J]. Neuropharmacology, 2014, 86: 228-240.
[8] Addy PH. Acute and post-acute behavioral and psychological effects of salvinorin A in humans [J]. Psychopharmacology (Berl), 2012, 220(1): 195-204.
[9] Sun J, Yang XM, Zhang Y, et al. Salvinorin A attenuates early brain injury through PI3K/Akt pathway after subarachnoid hemorrhage in rat[J]. Brain Res, 2019,1719:64-70.
[10] Su D, Riley J, Kiessling WJ, et al. Salvinorin A produces cerebrovasodilation through activation of nitric oxide synthase, kappa receptor, and adenosine triphosphate-sensitive potassium channel[J]. Anesthesiology, 2011, 114(2): 374-379.
[11] Sun J, Zhang Y, Lu JF, et al. Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage[J]. Microcirculation, 2018, 25(3):e12442.
[12] Hosseini M, Sadeghnia HR, Salehabadi S, et al. The effect of L-arginine and L-NAME on pentylenetetrazole induced seizures in ovariectomized rats, an in vivo study[J]. Seizure, 2009, 18(10): 695-698.
[13] Chang B, Sang L, Wang Y, et al. The role of FoxO4 in the relationship between alcohol-induced intestinal barrier dysfunction and liver injury[J]. Int J Mol Med, 2013, 31(3): 569-576.
[14] Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat[J]. Stroke, 1995, 26(6): 1086-1092.
[15] Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation[J]. Stroke, 1995, 26(4): 627-635.
[16] Hasegawa S, Hasegawa Y, Miura M. Current therapeutic durgs against cerebral vasospsm after subarachnoid hemorrhage: a comprehensive review of basic and clinial studies[J]. Curr Drug Deliv, 2017, 14(6): 843-852.
[17] Nishizawa S, Laher Ⅰ. Signaling mechanisms in cerebral vasospasm[J]. Trends Cardiovasc Med, 2005, 15(1): 24-34.
[18] Cho HG, Shin HK, Shin YW, et al. Role of nitric oxide in the CBF autoregulation during acute stage after subarachnoid haemorrhage in rat pial artery[J]. Fundam Clin Pharmacol,2003, 17(5): 563-573
[19] Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment[J]. Pharmacol Ther, 2005, 105(1): 23-56.
[20] Dietrich HH, Dacey Jr RG. Molecular keys to the problems of cerebral vasospasm[J]. Neurosurgery, 2000, 46(3): 517-530.
[21] Zhu J, Song W, Li L, et al. Endothelial nitric oxide synthase:a potential therapeutic target for cerebrovascular diseases[J]. Mol Brain,2016,9(1):30-37.
[22] Blanes MG, Oubaha M, Rautureau Y, et al. Phosphorylation of tyrosine 801 of vascular endothelial growth factor receptor-2 is necessary for Akt-dependent endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells[J]. J Biol Chem, 2007, 282(14): 10660-0669.
|