[1]Rossi DJ, Jamieson CH, Weissman IL. Stems cells and the pathways to aging and cancer [J]. Cell, 2008, 132(4):681-696.
[2]Gengatharan A, Malvaut S, Marymonchyk A, et al. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics [J]. Cell, 2021, 184(3): 709-722.
[3]Velthoven CTJ, Rando TA. Stem cell quiescence: dynamism, restraint, and cellular idling [J]. Cell Stem Cell, 2019, 24(2):213-225.
[4]Maryanovich M, Oberkovitz G, Niv H, et al. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells [J]. Nature Cell Biol, 2012, 14(5):535-541.
[5]Takubo K, Ohmura M, Azuma M, et al. Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest [J]. Cell Stem Cell, 2008, 2(2):170-182.
[6]Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation [J]. Brain Res Rev, 2007, 53(1):198-214.
[7]Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more [J]. Nat Rev Mol Cell Biol, 2013, 14(4):197-210.
[8]Shibata A, Jeggo PA. ATM’s role in the repair of DNA double-strand breaks [J]. Genes (Basel), 2021, 12(9):1370.
[9]Rao F, Cha J, Xu J, et al. Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2 [J]. Mol Cell, 2020, 79(4):702.
[10]Guo QQ, Wang SS, Zhang SS, et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress [J]. EMBO J, 2020, 39(10):e103111.
[11]Amirifar P, Ranjouri MR, Yazdani R, et al. Ataxia-telangiectasia: a review of clinical features and molecular pathology [J]. Pediatr Allergy Immunol, 2019, 30(3):277-288.
[12]McKinnon PJ. ATM and the molecular pathogenesis of ataxia telangiectasia[J]. Annu Rev Pathol, 2012, 7:303-321.
[13]Jin MH, Oh DY. ATM in DNA repair in cancer [J]. Pharmacol Ther, 2019, 203:107391.
[14]Dong ChM,Jin GH. Age-related changes of neural stem cells from the subventricular zone of aged mice[J]. Acta Anatomica Sinica, 2016,47(5):577-582. (in Chinese)
董传明,金国华. 自然衰老小鼠室管膜下区神经干细胞增龄性改变[J]. 解剖学报,2016,47(5):577-582.
[15]Ayarajan J, Milsom MD. The role of the stem cell epigenome in normal aging and rejuvenative therapy [J]. J Hum Mol Genet, 2020, 29(R2):R236-R247.
[16]Zou LQ, Yi X, He H, et al. Expression of RUNX1T1 and neuronal differentiation in radial glial cells after deafferented injury of hippocampus in vitro[J]. Acta Anatomica Sinica, 2020,51(6):809-814. (in Chinese)
邹琳清,衣昕,何辉,等. 海马去神经支配损伤后放射状胶质细胞表达RUNX1T1 的变化及对向神经元分化的影响[J]. 解剖学报,2020,51(6):809-814.
[17]Urbán N, Cheung TH. Stem cell quiescence: the challenging path to activation [J]. Development, 2021, 148(3):dev165084.
[18]Urbán N, Blomfield IM, Guillemot F. quiescence of adult mammalian neural stem cells: a highly regulated rest [J]. Neuron, 2019, 104(5):834-848.
[19]Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain [J]. Development, 2019, 146(4):dev156059.
[20]Liu Y, Namba T, Liu J, et al. Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus [J]. Neuroscience, 2010, 166(1): 241-251.
[21]Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells [J]. Nature, 2004, 431(7011):997-1002.
[22]Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells [J]. Nat Med, 2006, 12(4):446-451.
[23]Fortin J, Bassi C, Ramachandran P, et al. Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy [J]. J Clin Invest, 2021, 131(5):e131698.
|