[1]Villanueva A. Hepatocellular carcinoma [J]. N Engl J Med, 2019, 380(15): 1450-1462.
[2]Forner A, Reig M, Bruix J. Hepatocellular carcinoma [J]. Lancet, 2018, 391(10127): 1301-1314.
[3]Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma [J]. Cell, 2019, 179(2): 561-577 e522. [4]Yang Z, Yan C, Ma J, et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma [J]. Nat Metab, 2023, 5(1): 61-79.
[5]Bayo J, Fiore EJ, Dominguez LM, et al. A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets [J]. J Hepatol, 2019, 71(1): 78-90.
[6]Hu H, Saha N, Yang Y, et al. The ENL YEATS epigenetic reader domain critically links MLL-ENL to leukemic stem cell frequency in t(11;19) Leukemia [J]. Leukemia, 2023, 37(1): 190-201.
[7]Takacova S, Slany R, Bartkova J, et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo [J]. Cancer Cell, 2012, 21(4): 517-531.
[8] Ui A, Nagaura Y, Yasui A. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair [J]. Mol Cell, 2015, 58(3): 46-482.
[9]Mueller D, Bach C, Zeisig D, et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification [J]. Blood, 2007, 110(13): 4445-4454.
[10]Erb MA, Scott TG, Li BE, et al. Transcription control by the ENL YEATS domain in acute leukaemia [J]. Nature, 2017, 543(7644): 270-274.
[11]Wan L, Wen H, Li Y, et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia [J]. Nature, 2017, 543(7644): 265-269.
[12]Liu Y, Li Q, Alikarami F, et al. Small-molecule inhibition of the acyl-lysine reader ENL as a strategy against acute myeloid leukemia [J]. Cancer Discov, 2022, 12(11): 2684-2709.
[13]Li C, Tang Z, Zhang W, et al. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA [J]. Nucleic Acids Res, 2021, 49(W1): W242-W246.
[14]Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Res, 2017, 45(W1): W98-W102.
[15]Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses [J]. Neoplasia, 2017, 19(8): 649-658.
[16]Guan ChJ, Yu HJ, Zhang XD, et al. Expression and clinical significance of phosphoglycerate kinase 1 in hepatocellular carcinoma based on bioinformatics methods [J]. Acta Anatomica Sinica, 2022, 53(6): 744-753. (in Chinese)
管成剑, 于华婧, 张小东, 等. 基于癌症多组学数据库深度解析磷酸甘油激酶1在肝细胞癌中的表达及临床意义 [J]. 解剖学报, 2022, 53(6): 744-753.
[17]Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575-580.
[18]Yu H, Bu C, Liu Y, et al. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair [J]. Sci Adv, 2020, 6(11): eaay4697.
[19]Sabari BR, Zhang D, Allis CD, et al. Metabolic regulation of gene expression through histone acylations [J]. Nat Rev Mol Cell Bio, 2017, 18(2): 90-101.
[20]Zhao D, Guan H, Zhao S, et al. YEATS2 is a selective histone crotonylation reader [J]. Cell Research, 2016, 26(5): 629-632.
[21]Li Y, Sabari Benjamin R, Panchenko T, et al. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain [J]. Mol Cell, 2016, 62(2): 181-193.
[22]Asiaban JN, Milosevich N, Chen E, et al. Cell-based ligand discovery for the ENL YEATS domain [J]. ACS Chem Biol, 2020, 15(4): 895-903.
[23]Kabra A, Bushweller J. The intrinsically disordered proteins MLLT3 (AF9) and MLLT1 (ENL) -multimodal transcriptional switches with roles in normal hematopoiesis, MLL fusion leukemia, and kidney cancer [J]. J Mol Biol, 2022, 434(1): 167117.
[24]Gougelet A. Epigenetic modulation of immunity: towards new therapeutic avenues in hepatocellular carcinoma [J]? Gut, 2019, 68(10): 1727-1728.
[25]Wang S, Wu Q, Chen T, et al. Blocking CD47 promotes antitumour immunity through CD103(+) dendritic cell-NK cell axis in murine hepatocellular carcinoma model [J]. J Hepatol, 2022, 77(2): 467-478.
[26]Tatsumi T, Takehara T, Kanto T, et al. B7-1 (CD80)-gene transfer combined with interleukin-12 administration elicits protective and therapeutic immunity against mouse hepatocellular carcinoma [J]. Hepatology, 1999, 30(2): 422-429.
[27]Hattori E, Okumoto K, Adachi T, et al. Possible contribution of circulating interleukin-10 (IL-10) to anti-tumor immunity and prognosis in patients with unresectable hepatocellular carcinoma [J]. Hepatol Res, 2003, 27(4): 309-314.
|