[1] Agarwal N, Xu X, Gopi M. Geometry processing of conventionally produced mouse brain slice images [J]. J Neurosci Methods, 2018, 306: 45-56.
[2] Li YZ, Shao ZhH, Li SG. Application of tissue and organ transparency technology in three-dimensional imaging studies [J]. Acta Anatomica Sinica, 2018, 49(3): 400-405.(in Chinese)
李瑛泽, 邵志华, 李思光. 组织器官透明化技术在三维成像研究中的应用 [J]. 解剖学报, 2018, 49(3): 400-405.
[3] Erturk A, Becker K, Jahrling N, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO [J]. Nat Protoc, 2012, 7(11): 1983-1995.
[4] Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction [J]. Nat Neurosci, 2013, 16(8): 1154-1161.
[5] Matryba P, Bozycki L, Pawlowska M, et al. Optimized perfusion-based CUBIC protocol for the efficient whole-body clearing and imaging of rat organs [J]. J Biophotonics, 2018, 11(5): e201700248.
[6] Chung K, Deisseroth K. CLARITY for mapping the nervous system [J]. Nat Methods, 2013, 10(6): 508-513.
[7] Liu L, Xia X, Xiang F, et al. F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation [J]. Biomed Opt Express, 2022, 13(1): 237-251.
[8] Tainaka K, Murakami TC, Susaki EA, et al. Chemical Landscape for Tissue Clearing Based on Hydrophilic Reagents [J]. Cell Rep, 2018, 24(8): 2196-2210.
[9] Spalteholz W. Über das Durchsichtigmachen von Menschlichen und Tierischen Präparaten und Seine Theoretischen Bedingungen [M]. 2. aufl. Leipzig: S. Hirzel, 1914.
[10] Fretaud M, Riviere L, Job E, et al. High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis [J]. Sci Rep, 2017,7:43012.
[11] Treweek JB, Chan KY, Flytzanis NC, et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping [J]. Nat Protoc, 2015, 10(11): 1860-1896.
[12] Cheng X, Sadegh S, Zilpelwar S, et al. Comparing the fundamental imaging depth limit of two-photon, three-photon, and non-degenerate two-photon microscopy [J]. Opt Lett, 2020, 45(10): 2934-2937.
[13] Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy [J]. J Opt Soc Am A Opt Image Sci Vis, 2006, 23(12): 3139-3149.
[14] Theer P, Hasan M T, Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier [J]. Opt Lett, 2003, 28(12): 1022-1024.
[15] Dodt HU, Leischner U, Schierloh A, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain [J]. Nat Methods, 2007, 4(4): 331-336.
[16] Corsetti S, Gunn-Moore F, Dholakia K. Light sheet fluorescence microscopy for neuroscience [J]. J Neurosci Methods, 2019, 319:16-27.
[17] Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy [J]. Science, 2004, 305(5686): 1007-1009.
[18] Keller PJ, Schmidt AD, Wittbrodt J, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy [J]. Science, 2008, 322(5904): 1065-1069.
[19] Ahrens MB, Orger MB, Robson DN, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy [J]. Nat Methods, 2013, 10(5): 413-420.
[20] Boothe T, Hilbert L, Heide M, et al. A tunable refractive index matching medium for live imaging cells, tissues and model organisms [J]. Elife, 2017, 6: e27240.
[21] Wang X, Pang Y, Ku G, et al. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact [J]. Opt Lett, 2003, 28(19): 1739-1741.
[22] Li L, Xia J, Li G, et al. Label-free photoacoustic tomography of whole mouse brain structures ex vivo[J]. Neurophotonics, 2016, 3(3): 035001.
[23] Zhang P, Li L, Lin L, et al. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo[J]. J Biophotonics, 2018, 11(1): 101002/jbio.201700024.
|