[1]Li SJ, Li ShR, Cui LH, et al. Comparison of efficacy and safety of piperacillin tazobactam and cefoperazone sodium sulbactam in the treatment of COPD complicated with pseudomonas aeruginosa infection[J]. Progress in Modern Biomedicine, 2021, 21(13): 5-7. (in Chinese)
李素娟, 李士荣, 崔立慧,等. 哌拉西林他唑巴坦与头孢哌酮钠舒巴坦治疗COPD合并铜绿假单胞菌感染的疗效和安全性对比[J]. 现代生物医学进展, 2021, 21(13): 5-7.
[2]Wang DF, Luo WJ, Liu M. Relationship between COPD and depression in the super-aged elderly and mediating effect of disability[J]. Chinese Mental Health Journal, 2022, 36(1): 44-49. (in Chinese)
王镝藩,罗文俊,刘淼. 超高龄老年人慢性阻塞性肺疾病与抑郁症状的关系及失能的中介作用[J]. 中国心理卫生杂志, 2022, 36(1): 44-49.
[3]Yu TT, Sun H, Zhang ShCh, et al. The effect of respiratory muscle rehabilitation exercise on pulmonary function of COPD patients[J]. International Medicine and Health Guidance News, 2020, 26(9): 1198-1200. (in Chinese)
于婷婷,孙晖,张书春,等. 呼吸肌康复锻炼对COPD患者肺功能的影响研究[J]. 国际医药卫生导报, 2020, 26(9): 1198-1200.
[4]Rho J, Seo CS, Hong EJ, et al. Yijin-Tang attenuates cigarette smoke and lipopolysaccharide-induced chronic obstructive pulmonary disease in mice[J]. Evid Based Complement Alternat Med, 2022, 2022: 7902920.
[5]Wang LL, Chen LY, Ma HM, et al. Effect of Euphorbia helioscopia L.aqueous extract on rats with cigarette and LPS-induced COPD[J]. Chinese Traditional Patent Medicine, 2021, 43(10): 2644-2653. (in Chinese)
王玲玲,陈兰英,马惠苗,等. 泽漆水提物对香烟联合LPS所致的COPD大鼠的改善作用[J]. 中成药,2021,43(10):2644-2653.
[6]Zhong L, Li TH, Wang HQ. The role of MIF in the progression of cigarette smoke induced inflammation in rats with COPD[J]. Hebei Medicine, 2022,28(5):720-725. (in Chinese)
钟莉,李天浩,王惠琴. MIF在香烟烟雾诱导的COPD大鼠炎症进展中的作用研究[J]. 河北医学,2022,28(5):720-725.
[7]Chen WS, Xiong W, Xiong Sh. Study on biological behavior of hepatocellular carcinoma cells influenced by peimine[J]. Heilongjjang Science, 2022,13(10):16-18. (in Chinese)
陈万松,熊伟,熊书. 贝母素甲影响肝癌细胞生物学行为研究[J]. 黑龙江科学,2022,13(10):16-18.
[8]Guo SL, Li JN, Xiao ShX. Effect of Fritillarin A on inflammatory reaction and autophagy in mice with cerebral ischemia reperfusion injury[J]. Acta Anatomica Sinica, 2019, 39(21): 5347-5350. (in Chinese)
郭苏兰,李佳娜,肖水秀. 贝母素甲对小鼠脑缺血再灌注损伤炎症反应及自噬的影响[J]. 中国老年学杂志,2019,39(21):5347-5350.
[9]Li AN, Fang ZhY, Zhou MJ, et al. Formyl peptide receptor 2 is involved in the occurrence of recurrent spontaneous abortion through p38 MAPK pathway [J]. Acta Anatamica Sinica, 2021,53(6):785-792. (in Chinese)
李安娜,房振亚,周美娟,等. 甲酰肽受体2通过p38 MAPK通路参与复发性流产的发生[J]. 解剖学报,2022,53(6):785-792.
[10]Fu XM, Zhang MC, Fan L, et al. Based on NF-κB effect of xiaoqinglong decoction on airway inflammation and airway remodeling in COPD mice induced by LPS combined with cigarette smoke[J]. Journal of Chinese Medicinal Materials, 2021,44(11):2692-2696. (in Chinese)
符秀曼,张美萃,范良,等. 基于NF-κB通路和COX-2水平探讨小青龙汤加减方对LPS联合香烟烟雾诱导的COPD小鼠气道炎症和气道重塑的影响[J]. 中药材,2021,44(11):2692-2696.
[11]Luo F, Liu J, Yan T, et. Salidroside alleviates cigarette smoke-induced COPD in mice[J]. Biomed Pharmacother, 2017,86:155-161.
[12]Chen XCh, Li ML, Pan BY, et al. Role of LncRNA RP11-20 G6. 3 and TLR4/NF-κB signaling pathway in airway inflammation and remodeling in COPD[J]. Acta Universitatis Medicinalis Anhui, 2022,57(4):586-593. (in Chinese)
陈训春,李名兰,潘碧云,等. TLR4/NF-κB信号通路激活LncRNA RP11-20G6调控慢性阻塞性肺疾病气道炎症和重塑[J]. 安徽医科大学学报,2022,57(4):586-593.
[13]Kim RY, Sunkara KP, Bracke KR, et al. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis[J]. Sci Transl Med, 2021, 13(21): 52-63.
[14]Zhao K, Dong R, Yu Y, et al. Cigarette smoke-induced lung inflammation in COPD mediated via CCR1/JAK/STAT/NF-κB pathway[J]. Aging (Albany NY), 2020,12(10):9125-9138.
[15]Dang X, He B, Ning Q, et al. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways[J]. Respir Res, 2020,21(1):95-103.
[16]Alharbi KS, Fuloria NK, Fuloria S, et al. Nuclear factor-kappa B and its role in inflammatory lung disease[J]. Chem Biol Interact, 2021,3(6):109-128.
[17]Barnes PJ. Oxidative stress-based therapeutics in COPD[J]. Redox Biol, 2020, 33(10): 101-113.
[18]Zhang Z, Fu C, Liu J, et al. Hypermethylation of the Nrf2 promoter induces ferroptosis by inhibiting the Nrf2-GPX4 axis in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16(2): 3347-3362.
[19]Wang L, Chen X, Li X, et al. Developing a novel strategy for COPD therapy by targeting Nrf2 and metabolism reprogramming simultaneously[J]. Free Radic Biol Med, 2021, 16(9): 436-445.
|