[1]Montaruli A, Castelli L, Mulè A, et al. Biological rhythm and chronotype: new perspectives in health[J]. Biomolecules, 2021,11(4):487.
[2]Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms[J]. Int J Chronobiol, 1976,4(2):97.
[3]Xu S, Akioma M, Yuan Z. Relationship between circadian rhythm and brain cognitive functions[J]. Front Optoelectron, 2021,14(3):278-287.
[4]Evans SL, Leocadio-Miguel MA, Taporoski TP, et al. Evening preference correlates with regional brain volumes in the anterior occipital lobe[J]. Chronobiol Int, 2021,38(8):1135-1142.
[5]Takeuchi H, Taki Y, Sekiguchi A, et al. Regional gray matter density is associated with morningness-eveningness: evidence from voxel-based morphometry[J]. Neuroimage, 2015,117:294-304.
[6]Zareba MR, Fafrowicz M, Marek T, et al. Late chronotype is linked to greater cortical thickness in the left fusiform and entorhinal gyri[J]. Biol Rhythm Res, 2022,53(10):1626-1638.
[7]Wang E, Jia Y, Ya Y, et al. Abnormal topological organization of sulcal depth-based structural covariance networks in Parkinson’s disease[J]. Front Aging Neurosci, 2021,12:575672.
[8]Palaniyappan L, Hodgson O, Balain V, et al. Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study[J]. Psychol Med, 2019,49(3):412-420.
[9]Yang S, Wu Y, Sun L, et al. Abnormal topological organization of structural covariance networks in patients with temporal lobe epilepsy comorbid sleep disorder[J]. Brain Sci, 2023,13(10):1493.
[10]Samantaray T, Gupta U, Saini J, et al. Unique brain network identification number for Parkinson’s and healthy individuals using structural MRI[J]. Brain Sci, 2023,13(9):1297.
[11]Yang Y, Cheng Y, Wang X, et al. Gout is not just arthritis: abnormal cortical thickness and structural covariance networks in gout[J]. Front Neurol, 2021,12:662497.
[12]Oginska H, Mojsa-Kaja J, Mairesse O. Chronotype description: in search of a solid subjective amplitude scale[J]. Chronobiol Int, 2017,34(10):1388-1400.
[13]Ogińska H. Can you feel the rhythm? A short questionnaire to describe two dimensions of chronotype[J]. Personality and Individual Differences, 2011,50(7):1039-1043.
[14]Shattuck DW, Mirza M, Adisetiyo V, et al. Construction of a 3D probabilistic atlas of human cortical structures[J]. Neuroimage, 2008,39(3):1064-1080.
[15]Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]. Neuroimage, 2006,31(3):968-980.
[16]Barnes J, Ridgway GR, Bartlett J, et al. Head size, age and gender adjustment in MRI studies: a necessary nuisance [J] ? Neuroimage, 2010,53(4):1244-1255.
[17]He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease[J]. J Neurosci, 2008,28(18):4756-4766.
[18]Whitlow CT, Casanova R, Maldjian JA. Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity[J]. Radiology, 2011,259(2):516-524.
[19]Bernhardt BC, Chen Z, He Y, et al. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy[J]. Cereb Cortex, 2011,21(9):2147-2157.
[20]Norbury R. Diurnal preference and grey matter volume in a large population of older adults: data from the UK biobank[J]. J Circadian Rhythms, 2020,18(1):3.
[21]Takeuchi H, Taki Y, Sekiguchi A, et al. Regional gray matter density is associated with morningness-eveningness: Evidence from voxel-based morphometry[J]. Neuroimage, 2015,117:294-304.
[22]Lapidaire W, Urrila AS, Artiges E, et al. Irregular sleep habits, regional grey matter volumes, and psychological functioning in adolescents[J]. PLoS One, 2021,16(2):e243720.
[23]Liao X, Vasilakos AV, He Y. Small-world human brain networks: perspectives and challenges[J]. Neurosci Biobehav Rev, 2017,77:286-300.
[24]He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J]. Cerebral cortex, 2007,17(10):2407-2419.
[25]Wang JS, Li ZY, Xu YQ. Complex network node attacking based on multi-attribute decision making[J]. Electronics Optics and Control, 2016,23(4):42-47. (in Chinese)
王劲松, 李宗育, 徐晏琦. 基于多属性决策的复杂网络节点攻击研究[J]. 电光与控制, 2016,23(4):42-47.
[26]Albert R, Jeong H, Barabási A. Error and attack tolerance of complex networks[J]. Nature, 2000,406(6794):378-382.
[27]Wandelt S, Sun X, Feng D, et al. A comparative analysis of approaches to network-dismantling[J]. Sci Rep, 2018,8(1):13513.
[28]Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks[J]. Nature, 1998,393(6684):440-442.
[29]Newman ME, Strogatz SH, Watts DJ. Random graphs with arbitrary degree distributions and their applications[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2001,64(2Pt2):026118.
[30]Zhao LM, Hu R, Xie FF, et al. Radiomic-based MRI for classification of solitary brain metastases subtypes from primary lymphoma of the central nervous system[J]. J Magn Reson Imaging, 2023,57(1):227-235.
|