[1]Xie JM, Yang XM. Recent progress of the neural injury mechanism after aneurysmal subarachnoid hemorrhage[J]. Acta Anatomica Sinca, 2020, 51(4): 618-652. (in Chinese)
谢江淼, 杨晓梅. 动脉瘤性蛛网膜下腔出血后神经元损伤机制的研究进展[J]. 解剖学报, 2020, 51(4): 618-625.
[2]Sun J, Zhao XL, Zeng GX, et al. Salvinorin A alleviating cerebral vasospasm after subarachnoid hemorrhage through phosphatidylinositol 3-kinase/protein kinase B/endothelial nitric oxide synthase pathway [J]. Acta Anatomica Sinca, 2021, 52(6): 855-862. (in Chinese)
孙娟, 赵秀丽, 曾国熙, 等. Salvinorin A通过磷脂酰肌醇-3激酶/蛋白激酶B/内皮型一氧化氮合酶通路减轻蛛网膜下腔出血后脑血管痉挛[J]. 解剖学报, 2021, 52(6): 855-862.
[3]Li Y, Wu P, Bihl JC, et al. Underlying mechanisms and potential therapeutic molecular targets in blood-brain barrier disruption after subarachnoid hemorrhage[J]. Curr Neuropharmacol, 2020, 18(12): 1168-1179.
[4]Ueno M. Molecular anatomy of the brain endothelial barrier: an overview of the distributional features[J]. Curr Med Chem, 2007, 14(11): 1199-1206.
[5]Yu L, Fan SJ, Liu L, et al. Effect of ischemic postconditioning on cerebral edema and the AQP4 expression following hypoxic-eschemic brain damage in neonatal rats[J]. World J Pediatr, 2015, 11(2): 165-170.
[6]Peeyush Kumar T, McBride DW, Dash PK, et al. Endothelial cell dysfunction and injury in subarachnoid hemorrhage[J]. Mol Neurobiol, 2019, 56(3): 1992-2006.
[7]Xie Z, Enkhjargal B, Nathanael M, et al. Exendin-4 preserves blood-brain barrier integrity via glucagon-like peptide 1 receptor/activated protein kinase-dependent nuclear factor-kappa B/matrix metalloproteinase-9 inhibition after subarachnoid hemorrhage in rat[J]. Front Mol Neurosci, 2021, 14: 750726.
[8]Gu GJ. Research progress on the pathogenesis and prevention of highland cerebrovascular disease[J]. People’s Military Surgeon, 2018,61(1): 78-80. (in Chinese)
顾高洁. 高原脑血管病发病机制及防治研究进展[J]. 人民军医, 2018, 61(1): 78-80.
[9]Caner B, Hou J, Altay O, et al. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage[J]. J Neurochem, 2012, 123(Suppl 2): 12-21.
[10]Zhu Q, Enkhjargal B, Huang L, et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats[J]. J Neuroinflammation, 2018, 15(1): 178.
[11]Hou Y, Wang X, Chen X, et al. Establishment and evaluation of a simulated high-altitude hypoxic brain injury model in SD rats[J]. Mol Med Rep, 2019, 19(4): 2758-2766.
[12]Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat[J]. Stroke, 1995, 26(6): 1086-1092.
[13]Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation[J]. Stroke, 1995, 26(4): 627-635.
[14]Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model[J]. J Neurosci Methods, 2008, 167(2): 327-334.
[15]de Oliveira Manoel AL, Goffi A, Marotta TR, et al. The critical care management of poor-grade subarachnoid hemorrhage[J]. Crit Care, 2016, 20(1): 21.
[16]Savioli G, Ceresa IF, Gori G, et al. Pathophysiology and therapy of high-altitude sickness: practical approach in emergency and critical care [J]. J Clin Med, 2022, 11(14): 3937.
[17]Uterm?hlen O, Jakobshagen K, Blissenbach B, et al. Emergence of annexin vpos CD31neg CD42blow/neg extracellular vesicles in plasma of humans at extreme altitude[J]. PLoS One, 2019, 14(8): e0220133.
[18]Geraghty JR, Davis JL, Testai FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome[J]. Neurocrit Care, 2019, 31(2):373-389.
[19]Liu R, Chen Y, Liu G, et al. PI3K/Akt pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9): 797.
[20]Qu J, Zhao H, Li Q, et al. MST1 suppression reduces early brain injury by inhibiting the NF-κB/MMP-9 pathway after subarachnoid hemorrhage in mice[J]. Behav Neurol, 2018, 2018: 6470957.
[21]Zou Z, Dong YS, Liu DD, et al. MAP4K4 induces early blood-brain barrier damage in a murine subarachnoid hemorrhage model[J]. Neural Regen Res, 2021, 16(2): 325-332.
[22]Liu X, Zhang X, Ma K, et al. Matrine alleviates early brain injury after experimental subarachnoid hemorrhage in rats: possible involvement of PI3K/Akt-mediated NF-κB inhibition and Keap1/Nrf2-dependent HO-1 inductionn[J]. Cell Mol Biol (Noisy-Le-grand), 2016, 62(11): 38-44.
[23]Halder SK, Kant R, Milner R. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism[J]. Angiogenesis, 2018, 21(2): 251-266.
[24]Boroujerdi A, Milner R. Defining the critical hypoxic threshold that promotes vascular remodeling in the brain[J]. Exp Neurol, 2015, 263: 132-140.
|