[1]Joseph C, Mangani AS, Gupta V, et al. Cell cycle deficits in neurodegenerative disorders: uncovering molecular mechanisms to drive innovative therapeutic development [J]. Aging Dis, 2020, 11(4):946-966.
[2]Tam OH, Rozhkov NV, Shaw R, et al. Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia [J]. Cell Rep, 2019, 29(5):1164-1177.
[3]Spiller KJ, Restrepo CR, Khan T, et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy [J]. Nat Neurosci, 2018, 21(3):329-340.
[4]Scherz B, Rabl R, Flunkert S, et al. mTh1 driven expression of hTDP-43 results in typical ALS/FTLD neuropathological symptoms [J]. PLoS One, 2018, 13(5):e0197674.
[5]Zhang YW, Gao Y, Sun HC, et al. Expressions of iron transport related proteins in the spinal cord of amyotrophic lateral sclerosis transgenic mice [J]. Acta Anatomica Sinica, 2021,52(2):161-167.(in Chinese)
张雅雯,高莹,孙菡聪,等.铁转运相关蛋白在肌萎缩性侧索硬化症转基因鼠脊髓中的表达变化[J].解剖学报,2021,52(2):161-167.
[6]Hoglinger GU, Breunig JJ, Depboylu C, et al. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease [J]. Proc Natl Acad Sci USA, 2007, 104(9):3585-3590.
[7]Lopes JP, Oliveira CR, Agostinho P. Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides [J]. Cell Cycle, 2009, 8(1):97-104.
[8]Wang X, Shen XH, Sun RZh, et al. The establishment of human TDP-43 mutant transgenic mice of ALS [J]. International Journal of Genetics, 2012,(3):139-145. (in Chinese)
王旭,沈星辉,孙瑞珍,等.人突变TDP-43转基因小鼠ALS模型的建立[J].国际遗传学杂志,2012,(3):139-145.
[9]Wegorzewska I, Bell S, Cairns NJ, et al. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration [J]. Proc Natl Acad Sci USA, 2009, 106 (44): 18809 -18814.
[10] Ippati S, Deng Y, van der Hoven J, et al. Rapid initiation of cell cycle reentry processes protects neurons from amyloid-beta toxicity [J]. Proc Natl Acad Sci USA, 2021, 118(12):e2011876118.
[11] Fallini C, Bassell GJ, Rossoll W. The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth [J]. Hum Mol Genet, 2012, 21(16):3703-3718.
[12] Guo W, Chen Y, Zhou X, et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity [J]. Nat Struct Mol Biol, 2011, 18(7):822-830.
[13] Chia R, Chio A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications [J]. Lancet Neurol, 2018, 17(1):94-102.
[14] Ramesh N, Daley EL, Gleixner AM, et al. RNA dependent suppression of C9orf72 ALS/FTD associated neurodegeneration by Matrin-3 [J]. Acta Neuropathol Commun, 2020, 8(1):177.
[15] Chang YH, Dubnau J. The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a drosophila TDP-43 model of neurodegeneration [J]. Curr Biol, 2019, 29(19):3135-3152 e3134.
[16] Krug L, Chatterjee N, Borges-Monroy R, et al. Retrotransposon activation contributes to neurodegeneration in a drosophila TDP-43 model of ALS [J]. PLoS Genet, 2017, 13(3):e1006635.
[17] Jara JH, Gautam M, Kocak N, et al. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology [J]. J Neuroinflammation, 2019, 16(1):196.
[18] Jara JH, Villa SR, Khan NA, et al. AAV2 mediated retrograde transduction of corticospinal motor neurons reveals initial and selective apical dendrite degeneration in ALS [J]. Neurobiol Dis, 2012, 47(2):174-183.
[19] Voigt A, Herholz D, Fiesel FC, et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity [J]. PLoS One, 2010, 5(8):e12247.
[20] Kandlur A, Satyamoorthy K, Gangadharan G. Oxidative stress in cognitive and epigenetic aging: a retrospective glance [J]. Front Mol Neurosci, 2020, 13:41.
[21] Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis [J]. Science, 2006, 314(5796):130-133.
[22] Frade JM, Ovejero-Benito MC. Neuronal cell cycle: the neuron itself and its circumstances [J]. Cell Cycle, 2015, 14(5):712-720.
[23] Zhang L, Liang P, Zhang R. Impact of mitochondria-mediated apoptosis in U251 cell cycle arrest in G1 stage and caspase activation [J]. Med Sci Monit, 2015, 21:3629-3633.
[24] Zhang J, Cicero SA, Wang L, et al. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons [J]. Proc Natl Acad Sci USA, 2008, 105(25):8772-8777.
[25] Taylor JP, Brown Jr RH, Cleveland DW. Decoding ALS: from genes to mechanism [J]. Nature, 2016, 539(7628):197-206.
|