[1]Colom LV, Perry G, Kuljis RO. Tackling the elusive challenges relevant to conquering the 100-plus year old problem of Alzheimer’sdisease [J]. Curr Alzheimer Res, 2013, 10(1): 108-116.
[2]Tam JH, Pasternak SH. Amyloid and Alzheimer’s disease: inside and out [J]. Can J Neurol Sci, 2012,39(3):286-298.
[3]Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes [J]. Acta Neuropathol, 1991, 82(4): 239-259.
[4]Kamal A, Stokin GB, Yang Z, et al. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesinI [J]. Neuron, 2000, 28(2): 449-459.
[5]Yuan A, Hassinger L, Rao MV, et al. Dissociation of axonal neurofilament content from its transport rate [J]. PLoS One, 2015, 10(7): e0133848.
[6]Stokin GB, Lillo C, Falzone TL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease [J]. Science, 2005, 307(5713): 1282-1288.
[7]Lu JP, Huang JX, Ding MB. Axonal transport and toxic peripheral neuropathy [J]. International Journal of Medical Hygiene, 1996, (5): 3-6.(in Chinese)
鲁洁波, 黄金祥, 丁茂柏. 轴浆运输与中毒性周围神经病 [J]. 国外医学卫生学分册, 1996, (5): 3-6.
[8]Kamal A, Almenar-Queralt A, Leblanc JF, et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP [J]. Nature, 2001, 414(6864): 643-648.
[9]Checler F. Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease [J]. J Neurochem, 1995, 65(4): 1431-1444.
[10]Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease [J]. Trends Cell Biol, 1998, 8(11): 447-453.
[11]Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion [J]. Proc Natl Acad Sci USA, 1999, 96(20): 11049-11053.
[12]Caballero Oteyza A, Battaloglu E, Ocek L, et al. Motor protein mutations cause a new form of hereditary spastic paraplegia [J]. Neurology, 2014, 82(22): 2007-2016.
[13]Reid E, Kloos M, Ashley-Koch A, et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10) [J]. Am J Hum Genet, 2002, 71(5): 1189-1194.
[14]Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta [J]. Cell, 2001, 105(5): 587-597.
[15]Chevalier-Larsen E, Holzbaur EL. Axonal transport and neurodegenerative disease [J]. Biochim Biophys Acta, 2006, 1762(11-12): 1094-1108.
[16]Gunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease [J]. J Neurobiol, 2004, 58(2): 258-271.
[17]Mattson AE, Bharadwaj AR, Zuhl AM, et al. Thiazolium-catalyzed additions of acylsilanes: a general strategy for acyl anion addition reactions [J]. J Org Chem, 2006, 71(15): 5715-5724.
[18]Ghiretti AE, Thies E, Tokito MK, et al. Activity-dependent regulation of distinct transport and cytoskeletal remodeling functions of the dendritic kinesin KIF21B [J]. Neuron, 2016, 92(4): 857-872.
[19]Morfini GA, Burns M, Binder LI, et al. Axonal transport defects in neurodegenerative diseases [J]. J Neurosci, 2009, 29(41): 12776-12786.
[20]Liu Q, Xie F, Siedlak SL, et al. Neurofilament proteins in neurodegenerative diseases [J]. Cell Mol Life Sci, 2004, 61(24): 3057-3075.
[21]Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss [J]. J Neurol Sci, 2005, 233(1-2): 183-198.
[22]Jung C, Yabe JT, Shea TB. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity [J]. Brain Res, 2000, 856(1-2): 12-19.
[23]Lewis SE, Nixon RA. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments [J]. J Cell Biol, 1988, 107(6 Pt 2): 2689-2701.
[24]Shea TB, Yabe JT, Ortiz D, et al. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons [J]. J Cell Sci, 2004, 117(Pt 6): 933-941.
[25]Yabe JT, Chan WK, Chylinski TM, et al. The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation [J]. Cell Motil Cytoskeleton, 2001, 48(1): 61-83.
[26]Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis [J]. J Neuroimmunol, 1987, 14(2): 149-160.
[27]Gong CX, Wang JZ, Iqbal K, et al. Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices [J]. Neurosci Lett, 2003, 340(2): 107-110.
[28]Aira Z, Barrenetxea T, Buesa I, et al. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889 [J]. Neurosci Lett, 2016, 618:152-158.
[29]De Waegh SM, Lee VM, Brady ST. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells [J]. Cell, 1992, 68(3): 451-463.
[30]Nakagawa T, Chen J, Zhang Z, et al. Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments [J]. J Cell Biol, 1995, 129(2): 411-429.
[31]Nixon RA, Paskevich PA, Sihag R K, et al. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber [J]. J Cell Biol, 1994, 126(4): 1031-1046.
[32]Sihag RK, Inagaki M, Yamaguchi T, et al. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments [J]. Exp Cell Res, 2007, 313(10): 2098-2109.
|