[1] Yellon DM, Hausenloy DJ. Myocardial reperfusion injury[J]. N Engl J Med, 2007,357(11):1121-1135.
[2] Yu HC, Qin HY, He F, et al. Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling[J]. Hepatology, 2011,54(3):979-988.
[3] Go AS, Mozaffarian D, Roger VL, et al. Executive summary: heart disease and stroke statistics-2013 update: a report from the American Heart Association[J]. Circulation, 2013,127(1):143-152.
[4] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
[5] Huang W, Liu X, Cao J, et al. miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling[J]. J Mol Neurosci, 2015,55(4):821-829.
[6] Zhao H, Tao Z, Wang R, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion[J]. Brain Res, 2014,1592:65-72.
[7] Liu P, Zhao H, Wang R, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress[J]. Stroke, 2015,46(2):513-519.
[8] Stary CM, Xu L, Sun X, et al. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin[J]. Stroke, 2015,46(2):551-556.
[9] Guo F, Han X, Zhang J, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of MiR-25 in a rat model of focal cerebral ischemia[J]. PLoS One, 2014,9(10):e109267.
[10]Anzell AR, Maizy R, Przyklenk K, et al. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury[J]. Mol Neurobiol, 2018,55(3):2547-2564.
[11]Peng G, Yuan X, Yuan J, et al. miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL [J]. Mol Cell Biochem, 2015,409(1-2):103-111.
[12]Zhao H, Wang Y, Yang L, et al. MiR-25 promotes gastric cancer cells growth and motility by targeting RECK [J]. Mol Cell Biochem, 2014,385(1-2):207-213.
[13]Amiri E, Ghasemi R, Moosavi M. Agmatine protects against 6-OHDA-induced apoptosis, and ERK and Akt/GSK disruption in SH-SY5Y cells[J]. Cell Mol Neurobiol, 2016,36(6):829-838.
[14]Saravanan PB, Shanmuganathan MV, Ramanathan M. Telmisartan attenuated LPS-induced neuroinflammation in human IMR-32 neuronal cell line via SARM in AT1R independent mechanism[J]. Life Sci, 2015,130:88-96.
[15]Guo YL, Gao YM. The time relationships between apoptosis of neuron and endotheliocyte with the expression of Bcl-2 and Bax after focal cerebral ischemia reperfusion in rats [J].Acta Anatomica Sinica, 2002, 33(2):151-156.(in Chinese)
郭云良, 高英茂. 脑缺血再灌注后神经元和内皮细胞凋亡与Bcl-2和Bax表达的时相关系[J]. 解剖学报, 2002, 33(2):151-156.
[16]Chen HC, Kanai M, InoueYamauchi A, et al. An interconnected hierarchical model of cell death regulation by the Bcl-2 family[J]. Nat Cell Biol, 2015,17(10):1270-1281.
[17]Pe?a-Blanco A, García-Sáez AJ. Bax, Bak and beyond-mitochondrial performance in apoptosis[J]. FEBS J, 2018,285(3):416-431.
[18]Chen JX, Xu CM, Pan HZh. Mitochondria and apoptosis[J]. Acta Anatomica Sinica, 2000, 31(3):285-287.(in Chinese)
陈晋先, 许彩民, 潘华珍. 线粒体与细胞凋亡[J]. 解剖学报, 2000, 31(3):285-287.
[19]Vafaiyan Z, Gharaei R, Asadi J. The correlation between telomerase activity and Bax/Bcl-2 ratio in valproic acid-treated MCF-7 breast cancer cell line[J]. Iran J Basic Med Sci, 2015,18(7):700-704.
[20]Porter AG, Janicke RU. Emerging roles of Caspase-3 in apoptosis[J]. Cell Death Differ, 1999,6(2):99-104.
[21]Salakou S, Kardamakis D, Tsamandas AC, et al. Increased Bax/Bcl-2 ratio up-regulates Caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis[J]. In Vivo, 2007,21(1):123-132.
[22]Garcia S, Conde C. The role of poly(ADP-ribose) polymerase-1 in rheumatoid arthritis[J]. Mediators Inflamm, 2015,2015:837250.
|