[1] Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters?[J]. Nat Rev Neurosci, 2010,11(4):227-238.
[2] Martin JL, Magistretti PJ, Allaman Ⅰ. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes[J]. Curr Drug Targets, 2013,14(11):1308-1321.
[3] Cui W, Mizukami H, Yanagisawa M, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance[J]. J Neurosci, 2014,34(49): 16273-16285.
[4] Cui Y, Yang Y, Ni Z, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018,554(7692): 323-327.
[5] Westermair AL, Munz M, Schaich A, et al. Association of genetic variation at AQP4 locus with vascular depression[J]. Biomolecules, 2018,8(4): 164.
[6] Rajkowska G, Miguel-Hidalgo JJ. Glial pathology in major depressive disorder: an approach to investigate the coverage of blood vessels by astrocyte endfeet in human postmortem brain[J]. Methods Mol Biol, 2019,1938:247-254.
[7] Xia M, Yang L, Sun G, et al. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system[J]. Psychopharmacology (Berl), 2017,234(3): 365-379.
[8] Szu JI, Binder DK. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory[J]. Front Integr Neurosci,2016,10:8.
[9] Wu X, Zhang JT, Li D, et al. Aquaporin-4 deficiency facilitates fear memory extinction in the hippocampus through excessive activation of extrasynaptic GluN2B-containing NMDA receptors[J]. Neuropharmacology, 2017,112(Pt A):124-134.
[10] Medina A, Watson SJ, Bunney W Jr, et al. Evidence for alterations of the glial syncytial function in major depressive disorder[J]. J Psychiatr Res, 2016,72:15-21.
[11] Li X, Ran J, Zhou H, et al. Mice lacking urea transporter UT-B display depression-like behavior[J]. J Mol Neurosci, 2012,46(2):362-372.
[12] Levin EJ, Quick M, Zhou M. Crystal structure of a bacterial homologue of the kidney urea transporter[J]. Nature, 2009,462(7274):757-761.
[13] Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model[J]. Annu Rev Clin Psychol, 2014,10:393-423.
[14] Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments[J]. Nature, 1977,266(5604):730-732.
[15] Otte C, Gold SM, Penninx BW, et al. Major depressive disorder[J]. Nat Rev Dis Primers, 2016,2:16065.
[16] Blier P. Neurobiology of depression and mechanism of action of depression treatments[J]. J Clin Psychiatry, 2016,77(3):e319.
[17] Wang Zh, Huang YJ, Nai AT, et al. Fluoxetine improves the depression-like behavior in mice induced by chronic restraint stress by up-regulating the expression of bromodomain protein 4 in hippocampus[J].Acta Anatomica Sinica,2019,50(1): 18-23. (in Chinese)
王贞,黄怡佳,乃爱桃,等.氟西汀通过上调海马内溴结构域蛋白4的表达改善慢性束缚应激所致小鼠的抑郁样行为[J].解剖学报,2019,50(1):18-23.
[18] Vadodaria KC, Ji Y, Skime M, et al. Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons[J]. Mol Psychiatry, 2019,24(6):795-807.
[19] Rajkowska G, Hughes J, Stockmeier CA, et al. Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder[J]. Biol Psychiatry, 2013,73(7):613-621.
[20] Di Benedetto B, Malik VA, Begum S, et al. Fluoxetine requires the endfeet protein aquaporin-4 to enhance plasticity of astrocyte processes[J]. Front Cell Neurosci, 2016,10:8.
|